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Abstract

Breathing and heart rate are vital signs that might help identifying

pathological conditions by its monitoring. This master’s thesis presents

a system for monitoring breathing and heart rate, which combines con-

ventional Channel State Information sensing approaches with Machine

Learning techniques to provide a reliable monitoring. Also, a new sen-

sitive subcarrier selection method, which is an important step for pro-

cessing Channel State Information data, based on Hilbert Transform is

presented. Along with the system’s description, this thesis provides the

base theory for understanding each system’s component and the task

that each component does. An exhaustive analysis was also performed

and presented in order to understand Channel State Information data

as well as the processing of data for vital signs monitoring. Results

show that a reliable breathing rate monitoring can be achieved and

raise questions about heart rate monitoring which are also answered in

the same chapter.
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1. Introduction

1.1 Problem Statement

In Mexico, 4% of men and the 2% of women of the total population present sleep
apnea [1], which can lead to vehicular, work-related or domestic accidents, depres-
sive or anxiety symptoms, memory, attention and concentrations problems and
even cardiovascular diseases [2]. In addition, in 2020 of the 218,885 deaths caused
by heart-related diseases, the 76.3% of these were caused by ischemic heart disease
[3]. Both sleep apnea and ischemic heart are diseases that can be treated if de-
tected in time, as well as other respiratory and heart related diseases; that is the
reason why monitoring vital signs of vulnerable people is important: allowing an
early detection of adverse events that compromise people’s life, and by knowing
the scenario of respiratory and heart diseases in Mexico, vital signs monitoring
would lead to an opportune medical attention and improving the quality of life of
the Mexicans.

Current monitoring systems, such as for fall detection, activity recognition
and for monitoring vital signs, use wearable sensors or implement visual-based
technologies, such as surveillance cameras, which might result intrusive in daily-
life activities. For monitoring with wearable sensors, it is required that the subject
wears the sensor, leading to situations in which the subject forgets to wear it or
finds it inconvenient for realizing a certain activity. For visual-based solutions,
it is required that the subject is in the line-of-sight of the device as well as good
lightning and the installation of infrastructure, also they might affect the privacy of
the subject [4]. In this investigation Wi-Fi is used for developing a wireless sensing
system for monitoring both breathing and heart rate, overcoming the mentioned
limitations. Also an exhaustive analysis with signal and data analysis tools is
provided for a complete understanding of how Wi-Fi can be used for these vital
signs monitoring and for finding the best configuration of the system, considering
that current Wi-Fi based vital signs monitoring systems mostly relies on pure
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1.2 Objectives and Goals

signal processing without involving Data Mining or Artificial Intelligence tools
and techniques.

1.2 Objectives and Goals

1.2.1 General Objective

Design and develop a system for monitoring breathing and heart rate in controlled
environments for people at rest using the Channel State Information of a Wi-Fi
signal following a Data Mining methodology for a complete data understanding
and definition of system’s components.

1.2.2 Specific Objectives

• Define the signal processing steps that help extracting the breathing and
heartbeat signals, along with the characteristic features that provide reliable
classification results.

• Create machine learning models that are able to classify new observations
regardless of people’s height and weight.

• Once the models are trained, find the one with the best performance based
on different performance metrics.

• Provide an exhaustive analysis for understanding Channel State Information
data for breathing and heart rate estimation with signal and data analysis
tools.

• Develop a modular system for monitoring both breathing and heart rate.

1.2.3 Goals

• A system for vital sign monitoring available on request.

• Prove the possibility of monitoring vital signs with no need of wearable
devices.

• Publish the investigation results in journals and conferences.

• Create a dataset for breathing and heart rate classification available on re-
quest.

2



2. State of the Art

2.1 Overview

Wireless sensing technology has been a trend in recent years. The reason is that it
does not require sensor devices to be installed or attached to the target object, that
is why it is also known as a device-free sensing technology [5]. Indoor localization,
motion detection, activity and gesture recognition, human identification, and even
health monitoring are some of the fields of interest of this emerging technology.

One of the most common approaches to wireless sensing are Received Signal
Strength Indicator (RSSI)-based mechanisms. The RSSI is an indication of the
power level being received by the receiver (usually an antenna) [6], but these mech-
anisms are more commonly used in human localization and human motion detec-
tion. RSSI mechanisms can be very limited to simple environments because of its
dramatic performance degradation in complex situations due to multipath fading
and temporal dynamics [7], in short terms, RSSI is affected by object movement
leading to uncertain detections.

In order to embrace new fields and to surpass the RSSI limitations, a new wire-
less sensing technology appeared. Channel State Information (CSI) measurements
capture how wireless signals travel through the environment in time, frequency,
and spatial domains, so it can be used for numerous sensing applications. Wi-
Fi uses Multiple-Input Multiple-Output (MIMO) technology and uses Orthogonal
Frequency-Division Multiplexing (OFDM) signal modulation technique, obtaining
measurements per subcarrier generated by OFDM from each packet, while RSSI
is measured by a single value per packet [8, 9].

CSI characterizes how wireless signals propagate from the transmitter to the
receiver at certain carrier frequencies. Its amplitude and phase are affected by
multi-path effects including amplitude attenuation and phase shift and if assisted
with mathematical modeling and machine learning techniques, it can be used for
different sensing applications [8].

3



2.2 CSI for Indoor Localization

In this chapter, related work exploring wireless sensing using CSI of a Wi-Fi
signal will be exposed categorized by application, identifying the technology used,
experiment methodology, Data Mining techniques implemented and the result of
each investigation.

2.2 CSI for Indoor Localization

Indoor Localization is the process of obtaining a device or user location in an indoor
environment. For this section, some CSI based approaches for Indoor Localization
are listed, having the advantage to be device free from a user perspective.

Fingerprinting-based localization is an Indoor Localization method that con-
sists of two basic phases: 1) Offline phase, also called training phase, where the
database for facilitating real-time position estimation is constructed based on refer-
ence points and 2) Online phase, where the position of the device or user position is
being estimated by searching each reference point to find the most closely matched
spot as the target location [10].

Wu et al. [11] designed FILA, the first to use CSI to build a propagation model
to improve Indoor Localization performance compared to RSSI-based approach.
For fingerprinting, they leverage the CSI values including different amplitudes and
phases at multiple propagation paths, known as the frequency diversity, to uniquely
manifest a location. As experimental results, they used commercial 802.11n NICs
and conducted extensive experiments in typical indoor environments, obtaining
that FILA significantly improves the localization accuracy and speed of distance
calculation as compared to traditional RSSI-based approach.

Wang et al. [10] proposed a deep-learning-based fingerprinting scheme named
DeepFi based on CSI values collected from three antennas of an Intel 5300 NIC.
For their experiments, they used a TP-Link router as an Access Point (AP) and as
the mobile device a Dell laptop with the Intel 5300 NIC and tested their scheme in
two typical Indoor Localization environments, a living room in a house and a com-
puter laboratory. In both environments they implemented other three CSI-based
fingerprinting methods to compare their performance with DeepFi. As result, they
obtained that DeepFi achieved higher accuracy even in a non-LoS (Line-of-sight)
environment, outperforming the other CSI-based methods.

Zhou et al. [12] treat the wireless localization as a regression problem, es-
tablishing relations between locations and CSI fingerprints using empirical data,
proposing to apply Support Vector Machines (SVM) for classification to achieve
human presence detection and SVM for regression to achieve localization. For CSI
data preprocessing they apply Density-Based Spatial Clustering of Applications
with Noise (DBSCAN), Principal Component Analysis (PCA) to reduce the com-
puting complexity by extracting the most contributing features from the CSI data,
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2.3 CSI for Human Activity and Gesture Recognition

and normalization to enhance the precision and convergence before human pres-
ence detection. For the experimentation process, they employed a Netgear N300
wireless router and a Cisco RV180W wireless router as transmitters, with two com-
puters with Intel 5300 NIC for their bigger environment and only both computers
for a smaller environment. The evaluations prove the effectiveness of SVM and
data preprocessing in human presence and localization applications, achieving a
localization accuracy of 1.22m (mean error distance) for the bigger environment
and 1.39m for the smaller one, and presence detection precision higher than 97%
for both scenarios.

Sanam and Godrich [13] proposed a novel algorithm that adopts a threshold
based subcarrier selection scheme from each MIMO link, selecting only the ones
which the decrease in CSI amplitude is larger than the threshold based on the fact
that these selected subcarriers conform to the diffraction fading model. Applying
a preprocessing phase and PCA with SVM supervised learning model for classifi-
cation on CSI data collected in a research laboratory, equipped with typical office
facilities, with help of a TL-WR940N wireless router as an AP, a mobile device
with Intel 5300 NIC as data collector and a host PC that serves as the centralized
server for location estimation, they achieved a localization accuracy that can be
extended to 98.27%.

Hoang et al. [14] proposed a combined structure between Convolutional Neural
Network (CNN) and long-short term memory (LSTM) for Indoor Localization,
taking information from previous time steps in user’s trajectory to determine the
actual location. They collected CSI data with a laptop with Intel 5300 NIC and a
Nexus 5 smartphone with only one single AP and with an extensive preprocessing
phase and hundreds of testing locations, they demonstrated that the CNN-LSTM
structure achieves an average localization error of 2.5m with 80% of the errors
under 4m, which outperforms other Indoor Localization algorithms.

2.3 CSI for Human Activity and Gesture Recog-

nition

Human activity recognition (HAR) is of great importance for healthcare services,
context awareness and even for building control systems to provide a comfortable
indoor environment with high energy efficiency [15]. Conventional HAR systems
require that the user to be analyzed carries a specialized device that may intrude
in his daily activities. So this is where CSI of a Wi-Fi signal comes in handy.

It is proved that human activities between Wi-Fi receivers and transmitters in-
fluence in signal characteristics. This influences can be seen analyzing the CSI data
from the Wi-Fi signal and can be characterized in order to do activity recognition.

5



2.3 CSI for Human Activity and Gesture Recognition

Therefore, investigations employing CSI-based approaches have been done.
Wang et al. [16] developed a monitoring framework, E-eyes, that compares

amplitude profiles against those from known to recognize stationary activities like
cooking, sleeping or watching television where only small body movements are in-
volved. A walking activity causes significant pattern changes of the CSI amplitude
over time, so a moving variance thresholding technique is used to discriminate sta-
tionary activities from walking activity. To construct activity profiles, they used
a semi-supervised approach, where a clustering-based method is implemented to
identify multiple similar instances of an activity without a matching profile and
then the user is the one who labels the resulting clusters. This technique can be
also used to detect and update activity profiles when a change in the environment
occurs. For the experimental setup, a Linksys E2500 was used as an AP and three
laptops equipped with Intel 5300 NIC as the monitoring points. As result, E-eyes
proved that it has potential to support emerging applications such as elder care
due to its high accuracy to distinguish between stationary activities and walking
when a single occupant is at home.

Tan and Yang [17] developed WiFinger, a gesture recognition system which
runs on a single WiFi device connected to one AP. WiFinger is capable of identify-
ing typical finger gestures including zoom in/out, circle left/right, swipe left/right,
and flip up/down being robust to environment changes like moving furniture or
someone walking and individual diversity. This is achieved by employing Mul-
tipath Mitigation and Wavelet Based Denoising. After the environmental noise
removal, WiFinger recognizes gestures by calculating the similarity between the
extracted CSI pattern and the constructed gesture profiles by utilizing a supervised
or semisupervised approach. By employing these methods, WiFinger achieves an
overall recognition accuracy over 93% even when there are environmental changes.

Wang, Wu et al. [18] proposed a second version of a system named WiFall
[19], which is a passive device-free fall detection system that uses CSI amplitude
for activity classification (walking, sitting down, standing up) in order to detect
falls. WiFall system consists of three phases: sensing phase, where the transmitter
propagates wireless signals and the receiver collects the CSI information, learn-
ing phase, where data processing, profile construction and activity decision occurs
along with the classification algorithms, SVM and Random Forest, and the alert-
ing phase, where an emergency alarm is triggered when a fall is detected. The
WiFall system implements two TP-LINK TL-WDR7500 wireless routers as AP,
and two desktops equipped with Intel 5300 NIC as monitoring points, which are
also the servers that conduct data processing, profile construction and activity
decision. As a result, they obtained that the new version of WiFall can achieve
better performance with SVM and Random Forest classifier with Singular Value
Decomposition (SVD) matrix factorization reaching a precision of 98% for falling
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2.3 CSI for Human Activity and Gesture Recognition

detection rate.
A key limitation of prior Wi-Fi based activity or gesture recognition systems is

that they can only recognize a user’s activity if only a single user moves in the en-
vironment. Venkatnarayan et al. [20] designed a Wi-Fi based gesture recognition
system, WiMU, which can recognize gestures of multiple users even when they
perform them simultaneously with a novel method that generated virtual samples
for any desired combination of gestures using a real sample of each gesture in that
combination. WiMu demonstrated that it can recognize 2,3,4,5 and 6 simulta-
neously performed gestures (open and close door, circular arm movement, push
and pull armn, sit down and stand up, kicking, and brushing teeth) with average
accuracies of 95, 94.6, 93.6, 92.6, and 90.9% respectively.

Narui et al. [21] developed a system for human fall detection combining CSI
and machine learning using a 1-dimensional CNN with domain adaptation to over-
come covariate shift (situation where input data distribution is different between
the training and the test data, but conditional distribution is the same), mark-
ing in their dataset ”Fall” as an anomaly activity and ”Bed”, ”Walk”, ”Run”,
”Stand up”, ”Pick up” and ”Sit down” as normal. All experiments used 1 antenna
transmitter and 3 antenna receivers which are equipped with Intel NIC 5300 and
as result, they obtained a precision and recall of 100 for anomaly detection, with
a better match in class distribution compared to other domain adaptation tech-
niques.

Chen et al. [15] proposed an attention based bi-directional long short-term
memory (ABLSTM) approach for automatic feature learning and selection in the
task of HAR with Wi-Fi CSI measurements which can identify if the person is
lying down, falling, walking, running, sat down, or standing up in two different
environments, an activity room and a meeting room. They used a commercial Wi-
Fi router as a transmitter and a laptop with Intel 5300 NIC for the experimentation
process and compared their results with some other CSI benchmark approaches.
They used a 10 fold cross-validation for evaluation, randomly dividing all the
data into 10 folds, one fold for testing and the remaining for training. As result,
ABLSTM demonstrate a superior performance than the other approaches in their
experiments.

Damodaran et al. [4] implemented two different algorithms in their investi-
gation. The first one combines discrete wavelet transform (DWT), PCA, power
spectral density (PSD) and frequency of center of energy and Haart wavelet anal-
ysis to extract the lower frequency bins using a SVM as classifier. For the second
algorithm they only used LSTM that operates on raw data and use only denoising
via DWT. For their experimentation phase, they implemented both algorithms
in HAR, specifically the activities of walk, run, sit, stand and empty, collecting
the CSI data with two laptops equipped with Intel 5300 NIC with the help of

7



2.4 CSI for Human Identification

Linux 802.11n CSI Tool. As result, they obtained that both algorithms have prob-
lems differentiating between similar activities (like stand and sit, where there is no
movement) and besides all the preprocessing phase done in the first algorithm it
was only slightly better than the second one. As an extension, they added Fall as
an activity without any additional hardware but a second SVM was implemented
in order to obtain the Post Fall information (if the person stills lying or he stood
up). They noticed that during the sit down activity, the person sits down and
keeps sitting, which makes it similar to fall and keep lying so the second SVM
used to give false positives.

2.4 CSI for Human Identification

Human Identification is one of the main problems that device-free sensing technolo-
gies are trying to solve, due to its important applications in smart homes, indoor
intrusion detection, monitoring, and other security-related applications. CSI based
approaches have proved a decent performance with no invasive methods and with
Wi-Fi common devices, however, this approaches are still under an investigation
phase in order to improve even more their performance, searching to reach the
highest identification accuracy possible with different Data Mining techniques and
preprocessing methods.

Zeng et al. [22] developed WiWho, a framework to identify a person based on
a combination of step and walk analysis in small places. Step analysis requires
step cycle construction and calculation of time domain features for each step,
while walk analysis focuses in the overall walking behavior. Features from both
analysis are used in a decision tree-based classifier, which outputs the person’s
identity. Some of the limitations of WiWho are that it assumes that person’s
walking path is a straight line and that it is designed and evaluated for a single
person in the room at any given time. For performance evaluation, they used an
Asus RT-AC66U 802.11n Wi-Fi router as an AP and a laptop equipped with an
Intel 5300 NIC as a client. They observed that if more people is introduced in
person identification, chances are increased of people having similar gait, resulting
in an accuracy decrease when the group size increases, achieving an identification
accuracy of 92% to 80% for a group size of 2 to 6 respectively, where only a 2-3
meters walking length is necessary.

Xin et al. [23] proposed FreeSense to identify human indoors based on CSI
in their line-of-sight (LoS) path crossing moments between the transmitter and
receiver using k-nearest neighbor (K-NN) classifier, where the recognition is based
on the difference of personal movement influence to the Wi-Fi signal by adopting
the Dynamic Time Warping (DTW) as the distance metric between the learning
signal samples and the one to identify. Using a laptop equipped with Intel 5300
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NIC and a TP-LINK TLWR1043ND Wi-Fi router as an AP, FreeSense achieved
more than 88% accuracy with 6 different subjects. As same as WiWho, FreeSense
is limited to identify only if walking across the LoS path in straight line and with
only one person in the room.

Nipu et al. [24] used Boosted Decision Tree and Random Forest supervised
classifiers for human identification based only in each person’s gait pattern, utiliz-
ing skewness, mean, maximum, kurtosis, median, energy and highest fast Fourier
transformation peaks as features; they obtained an accuracy of 84% for Boosted
Decision Tree classifier and 78% with Random Forest classifier in a group of 5 peo-
ple. A desktop PC equipped Intel 5300 NIC was used for their experimentation
as the receiver and a TP-LINK TL-WR740N as the transmitter.

Wang, Zhao et al. [25] proposed a framework that decomposes raw noisy
CSI measurements into intrinsic mode functions (IMF) and extracts multi-domain
intrinsic features from them, also it uses PCA to acquire the principal components
of the CSI measurements. This framework works in two identification systems, one
using breathing pattern and the other one gait biometrics, both utilize softmax
regression algorithm [26] to solve the identification problem. For both systems, the
transmitter and receiver are PCs equipped with Intel 5300 NIC running CSI Tool
on Ubuntu, and as result of their experimentation, the breathing pattern based
system obtained an identification accuracy of 97.5% in no changing environments
and the gait system 90.4%. For changing environments, the identification accuracy
was of 91% and 90% respectively.

Wang, Han et al. [27] proposed CSI-Net, a deep learning framework based
on CNNs. To achieve human identification, they trained CSI-Net with 2 separate
task stages, one for biometrics estimations: body fat rate, muscle rate, water rate
and bone rate; and another for human identification based on the same inputs for
biometric estimation. Therefore, based on the internal composition obtained for
biometrics estimation, CSI-Net identifies the person. As result, they obtained that
CSI-Net can estimate biometrics accurately for every subject, achieving almost
100% accuracy in person recognition on most of the subjects.

Ding et al. [28] proposed Wihi, a human identity identification system that
uses a Recurrent Neural Network (RNN) with Long Short-Term Memory (LSTM)
blocks to identify different people by learning the gait features extracted: channel
power distribution in time domain, time-frequency analysis, energy distribution in
different frequency bands, maximum, minimum, mean, variance, standard devia-
tion, median, energy, and entropy. Discrete wavelet transform (DWT) was used to
eliminate the influence of the random noise in raw CSI. For their experimentation,
they used a commercial WiFi device with one antenna as the transmitter and a
laptop equipped with an Intel 5300 NIC as the receiver, obtaining an accuracy
of 85% and 73% with group sizes of 2 and 8 respectively with 4 unrelated people
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performing random actions at the same room. Also they analyzed the impact of
different walking paths, number of hidden nodes and walking speed on the resulting
identification accuracy.

2.5 CSI for Vital Sign Monitoring

Breathing and heart rate are vital signs that indicate the current state of a human
body, its health or even help to identify serious diseases. Recent approaches use
CSI of a Wi-Fi signal to monitor these vital signs, proving that even minute move-
ments, like chest movements caused by inhalation and exhalation process or heart
systole and diastole, can generate some influence in the CSI without the need of
using specialized instruments for sensing.

Liu et al. [29] proposed a system that estimates breathing and heart rate of
one or two persons in a bed scenario, taking as input CSI amplitude measure-
ments during people’s sleep, being able to detect and classify also sleep events like
turnovers. A Hampel filter and a moving average filter are used to remove environ-
mental noise, therefore CSI amplitude can clearly reflect the periodic up-and-down
chest movements generated by breathing. To select the subcarriers that are going
to be used to estimate breathing rate, variance of CSI amplitude is used to quantify
each subcarrier’s sensitivity to minute movements, then breathing rate is estimated
finding the peaks in each subcarrier that represent the breathing movements by
applying a peak identification algorithm that reduce the number of fake peaks,
constructing a breathing cycle and crosses all estimated breathing cycles found in
the selected subcarriers to enhance accuracy. Heart rate is estimated by locating
the maximum power in the average power spectral density (PSD) of all subcarriers
in the normal heart rate range. For experimentation, they used a laptop equipped
with an Intel 5300 NIC connected to a commercial wireless AP, obtaining that the
system can achieve comparable or even better performance as compared to exist-
ing dedicated sensor based approaches. Same authors in [30] extend the system
to also identify sleep postures by using time domain features like mean, maxi-
mum, minimum, variance, skewness, range, mode, median and kurtosis on each
subcarrier, having a total of 270 features, therefore Fisher scores were calculated
in order to only use the features having Fisher scores higher than a threshold.
Also, PCA was applied in order to reduce the computational cost, converting the
selected features into 20 linearly uncorrelated principal components. For posture
identification, four sleep profiles where constructed from CSI features and then,
they were used to train a machine learning classifiers: discriminant analysis, K-
NN, SVM and Random Forest, obtaining accuracies over 90% for sleep posture
identification with K-NN, SVM and Random Forest.

Wang, Zhang et al. [31] introduced the Fresnel zone model in a CSI breathing
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rate monitor in order to analyze the impact of body location in different Fresnel
zones and how body orientation affects the breathing rate detection. Deploying a
prototype system which consists of a mini PC equipped with a Intel 5300 NIC as
a monitoring point and a TP-Link router as an AP, they obtained that CSI data
when a subject is inside the 2nd. Fresnel zone is consistent and sharp enough to be
used for detection, but it starts fading when the subject moves towards the bound-
ary. Result shows that the system is not able to detect the subject’s breathing at 2
meters beyond the LoS along its perpendicular bisector. It was also observed that
the body orientation of a subject while he remains at the same location affects
the signal pattern, obtaining that chest movements are best captured when the
subject is facing the LoS.

Shang and Wu [32] designed WiHealth, a vital signs monitoring system which
uses median filter and a low-pass filter for denoising raw CSI waveform. For
extracting breathing and heart rate signals, they did a spectrum analysis applying
two band-pass filters with frequency bands of 0-1Hz for breathing and 1Hz-2Hz for
heart beat, and by using a threshold based method with the mean squared error
with multiple peaks in the spectrum, they eliminated false peaks that can lead
to inaccurate estimations. For breathing and heart rate estimation, a polynomial
filter was applied to smooth the CSI waveform and then a traditional peak finding
algorithm was used to get the count. Using a laptop equipped with an Intel 5300
NIC with 3 antennas as the receiver and a TP-Link TL-WR1043ND router as
the transmitter in a convetional meeting room, they obtained that WiHealth can
estimate breathing and heart rate accurately enough with average estimation error
under 0.6 breaths per minute and 6 beats per minute respectively.

Wang, Yang and Mao [33] developed PhaseBeat, a sensing system that uses
CSI phase difference data for monitoring respiration and heartbeat. PhaseBeat
is able to estimate breathing and heart rate when a subject is in a stationary
state (sitting, standing, or sleeping). By removing environmental noise, such as
the direct current component with Hampel Filter and downsampling, PhaseBeat
obtains a sinusoidal-like periodic signal from each subcarrier, selecting one for fur-
ther processing according to its sensitivity. Once selected, DWT is applied to the
subcarrier to remove high frequency noises from the collected CSI phase differ-
ence data; the coefficients obtained from DWT are used to detect the breathing
rate and the heart rate. Their experimental results obtained by using two desk-
top computers equipped with Intel 5300 NIC showed that an accuracy of 98%
can be obtained for breathing rate estimation as well as an accuracy of 95% for
heart rate estimation with a sampling rate of 400 Hz. For breathing rate, 90%
of the test data have an estimated error under 0.5 breaths per minute while for
heart rate an 80% of the test data have an estimated error under 2.5 beats per
minute. In 2020, the same authors developed Resilient realtime breathing Beat
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(ResBeat) system [34] which exploits bi-modal CSI, amplitude and phase difference
for realtime breathing rate monitoring. This time, for obtaining the environment
component and breathing component, they used Exponentially Weighted Moving
Average (EWMA) method since it does not required a large data buffer and is
more sensitive to more recent sample data being suitable for realtime monitoring.
ResBeat uses peak detection with a sliding window based method to mitigate the
effect of fake peaks for breathing rate monitoring in real time and also, it incor-
porates an adaptive signal selection method to always select the most sensitive
data group. As result, they obtained that ResBeat outperformed PhaseBeat due
to bi-modal CSI data approach and the adaptive signal selection method.

Zhang et al. [35] analyzed the capacity of detecting breathing inside the First
Fresnel Zone (FFZ) considering not only the front-side displacement of the chest
caused by breathing but also the back-side displacement, applying the diffraction
theory inside the FFZ to provide general theoretical foundation for CSI sensing.
By using two mini PC equipped with Intel 5300 NIC as transceivers to validate
their theory for RF-based human breathing sensing they obtained an accuracy for
breathing rate estimation above 95% with no need of signal denoising or processing
techniques while the person is lying between the two pair of transceivers and in the
FFZ. Also they carried out experiments to observe the impact of subject’s position
inside FFZ, breathing depth, body thickness, subject’s distance to transceivers and
body orientation on signal variations that are used for breathing rate estimation.

Khamis et al. [36] developed CardioFi, a heart rate monitor which uses a
subcarrier ranking scheme based on Spectral Stability score. For preprocessing, a
Hampel filter is applied to each subcarrier in order to remove outliers, after that,
they proposed to apply a de-trending method called Dynamic Window, which de-
termines the window size adaptively. After de-trending, another Hampel filter
is applied. For heart rate estimation, they fuse data from the most informative
subcarriers by calculating the mean power spectral density spectrum across the
subcarriers; the frequency component with the largest magnitude is the instanta-
neous heart rate. Using two laptops equipped with Intel 5300 NIC they obtained
a median error of 1.14 bpm and 90% of the errors are below 5.1 bpm.

Zhang, Hu et al. [37] developed BreathTrack, a breath tracking system that
utilizes both hardware and software approaches to enhance breathing rate estima-
tion. BreathTrack exploits phase variations of the CSI to track human breath and
proposes a joint angle of arrival-time of flight sparse recovery method to eliminate
the multipath effect and extract the information of the dominant path. By using
two desktop computers equipped with Intel 5300 NIC, they obtained an accuracy
for breathing rate estimation above 99% for both LoS and NLoS scenarios.
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3. Theoretical Framework

3.1 Channel State Information

Wi-Fi uses Multiple-Input Multiple-Output (MIMO) technology for meeting the
demands of current networks, increasing a system’s throughput by transmitting
multiple data streams by exploiting or combating multi-path fading effects of
a wireless channel. This can not be done without CSI, as it allows to adapt
transmissions according to the current channel conditions [38]. For constructing
CSI, the transmitter sends pre-defined symbols, known as Long Training Symbols
(LTFs) for each subcarrier generated by Orthogonal Frequency-Division Multi-
plexing (OFDM) [39], which is the modulation technique used for Wi-Fi stan-
dards 802.11a, 802.11n, and 802.11ac, in each packet preamble [8]. This allows
the receiver to estimate channel characteristics, an operation known as channel
estimation, which results in the obtainment of CSI.

A simple way of defining CSI is as a collection H of M ×N matrices, where M
is the number of receiver antennas and N is the number of transmitter antennas, in
which each matrix describes how the signal propagates in the channel by combining
the effects of amplitude attenuation and phase shift for a single subcarrier [40].

A graphical representation of a CSI collection with M = 3, N = 3 and k
subcarriers given a packet index i is shown in 3.1.

Each CSI entry Hi for a subcarrier k represents the Channel Frequency Re-
sponse (CFR), a complex value defined as:

H i,k = |H i|ej∠Hi,k (3.1)

where |H i| is the amplitude response and ∠H i,k represents the phase shift re-
sponse. These effects can be seen as a way of describing how the signal behaves
in the presence of surrounding objects and even of a person. Therefore if a per-
son moves inside the range of the signal, an specific signal behavior is expected
according to the characteristics of the movement. By applying signal processing
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Figure 3.1: CSI collection representation

techniques, Data Mining, and Artificial Intelligence tools and techniques to these
signal behaviors, wireless sensing can be achieved.

3.2 CSI Monitoring Tools

Although CSI is included since IEEE 802.11n [8], it is not shown to the user by
all Wi-Fi devices. Therefore a CSI collecting tool is needed, each one with its own
equipment requirement.

A) Linux 802.11n CSI Tool
Linux 802.11n CSI Tool is probably the most known CSI monitoring tool for device
free sensing applications. Developed by Halperin et al. [41], this CSI tool is built
on the Intel 5300 NIC and uses a custom firmware and open source Linux wireless
drivers. Each CSI matrix entry has a signed 8-bit resolution where amplitude and
phase shift are located. This firmware enables an Intel debug mode that records
CSI from up to 30 subcarrier groups for each correctly received 802.11n packet
and sends it up to the kernel driver to finally be passed to a user-space program
for processing.

B) Atheros CSI Tool
Atheros CSI Tool is an open source 802.11n monitor developed by Xie and Li [42]
with support to all types of Atheros 802.11 Wi-Fi chipsets. Unlike Linux 802.11n
CSI Tool, it does not apply any modification to the firmware, all functionalities
are implemented in software, the CSI matrix entry has a 10-bit resolution each for
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amplitude and phase shift. The Atheros CSI Tool is able to obtained CSI from up
to 56 subcarriers for a 20 MHz channel bandwidth and 114 for a 40 MHz channel
bandwidth.

C) ESP32 CSI Toolkit
Applications using the previous mentioned monitoring tools have obtained satis-
factory results, proving their effectiveness, but they have two notable limitations:
1) They need one or more laptop or desktop computer equipped with an Intel
5300 NIC for Linux 802.11n CSI Tool or a compatible Atheros NIC for Atheros
CSI Tool to act as receivers. This resource limitation may impact on the deploy-
ment of a large-scale system where it is needed to use low cost equipment or space
is a limitation; 2) For Intel 5300 NIC, only 30 out of 52 data subcarriers can be
obtained[41, 43].

ESP32 CSI Toolkit, the monitoring tool developed by Hernandez [44] uses
ESP32 microcontroller units (MCU) [45] which can act as both an AP or a station
under TCP and 802.11 b/g/n/e/i Wireless Local Area Network (WLAN) Medium
Access Control (MAC) protocol and is able to connect to most Wi-Fi routers. In
ESP32 CSI Toolkit there are two ways to obtain CSI data: 1) a SD card on board
can be used, the ESP32 will automatically detect the SD card and automatically
output CSI data to a CSV file or 2) CSI data can be easily collected from serial port.
ESP32 CSI Toolkit can obtain CSI amplitude and phase shift from 64 subcarriers
and by using a MCU, ESP32 CSI Toolkit results in a flexible, low cost and easy
to deploy tool in device free sensing applications.

3.3 CSI Data Calibration

In order to use CSI for any device free sensing application first it needs to be
denoised due to the fact that CSI comes with inherent noise from equipment
and environmental factors. For this investigation focused on breathing and heart
rate estimation, noise coming from other body movements, sudden environmental
changes and electromagnetic noise needs to be mitigated.

Table 3.1 shows signal processing methods implemented in related work about
monitoring vital signs using CSI; as it can be seen, some of the most used are
Hampel Filters for outlier removal, Bandpass Filters to remove undesired frequen-
cies, and Moving Average Filters for signal smoothing. The step of applying these
filters is commonly named Data Calibration.

Once data is calibrated, it is highly recommended to implement a subcarrier
selection method to reduce computing complexity, which needs to be considered
when working with embedded devices or if a real-time functioning is intended.
Table 3.1 also shows common subcarrier selection methods, where the most used
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is based in an amplitude variance threshold.
This section will be focused in introducing the data calibration methods pre-

viously mentioned as well as the variance-based subcarrier selection method.

16



3.3 CSI Data Calibration

T
ab

le
3.

1:
C

S
I

D
at

a
C

al
ib

ra
ti

on
M

et
h
o
d
s

R
e
fe

r
e
n
c
e

V
a
r
ia

b
le

C
a
li
b
r
a
t
io

n
M

e
t
h
o
d

S
u
b
c
a
r
r
ie

r
S
e
le

c
t
io

n

B
R

H
R

H
a
m
p
e
l

F
il
te

r
H
ig
h
p
a
ss

F
il
te

r
L
o
w
p
a
ss

F
il
te

r
B
a
n
d
p
a
ss

F
il
te

r
M

o
v
in

g
A
v
e
ra

g
e

F
il
te

r

M
e
d
ia
n

F
il
te

r
S
a
v
it
z
k
y
-

G
o
la
y

F
il
te

r

D
o
w
n

sa
m
p
li
n
g

D
W

T
IF

F
T

M
a
x

V
a
r.

S
p
e
c
tr
a
l

S
ta

b
il
it
y

W
a
v
e
fo
rm

A
n
a
ly
si
s

M
e
a
n

A
b
s.

D
e
v
.

S
p
a
rs
e

R
e
c
o
v
e
ry

[2
9
]

X
X

X
X

X

[3
1
]

X
X

X
X

[3
2
]

X
X

X
X

X
X

[3
3
]

X
X

X
X

X
X

[4
6
]

X
X

X

[4
7
]

X
X

X
X

X

[3
6
]

X
X

X
X

[3
0
]

X
X

X
X

X

[3
7
]

X
X

X
X

[4
8
]

X
X

X
X

X

17



3.3 CSI Data Calibration

3.3.1 Digital Filters

For calibrating CSI data it is common to rely on signal processing tools such as
digital filters. Digital filters work with discrete signals and have the function of
applying a mathematical processing to these kind of signals. They are composed of
adders, multipliers and delay elements (also known as shifters or memory). There
are two different types of filters, Finite Impulse Response or FIR and Infinite
Impulse Response Filters or IIR. FIR filters explanation is straightforward, for an
input which is finite in duration, its response is also finite and it involves only
feed-forward calculations. For IIR filters the output is used as feedback for the
filter, therefore an output in a certain time depends partially on previous outputs
[49]. For explaining IIR filters see Fig. 3.2, supposed it has as an input a signal
x[n] = [0, 1, 0, 0, 0], its output would be y[n] = [0, 0.5, 0.5, 0.5, ...] and so on while
x[n] = 0.

Figure 3.2: IIR Filter Example

The values 0.5 and 1 observed in Fig. 3.2 associated to an adder or multiplier
are known as filter coefficients. The number of filter elements and coefficients are
determined according to the desired filter function and, according to the treatment
of the filter in the frequency domain of an input signal these can be classified as
low-pass, high-pass, band-pass and band-stop filters [50]. For the development of
this investigation only band-pass and low-pass filters were implemented.

Low-pass Filter
A low-pass filter is a type of filter that allows all frequencies until a cut-off frequency
fc. At fc, the filter response curve presents an attenuation of -3 dB in respect to
the magnitude presented in the passband region of the filter. This attenuation
continues for all other frequencies above fc [51]. In Fig. 3.3 a low-pass filter with
a fc of 4 Hz is presented, where can be seen that at this point, the magnitude of
the response curve for the low-pass filter is of -3 dB.

For this investigation, two different filters explored show a low-pass filter be-
havior and in investigations such as in [32] used a simple low-pass filter to remove
high frequency noise which can not be caused by chest movement to obtain the
breathing signal.
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Figure 3.3: Example of frequency response of a low-pass filter (values for cut-off
frequency and magnitude are approximated due to software resolution)

Band-pass Filter
A band-pass filter allows all signal frequencies between a low-cut-off frequency fc1
and a high-cut-off frequency fc2, rejecting all other frequencies out of this interval
or band. The cut-off frequencies defined are points where the response curve is at
70.7% (or -3 dB) of its maximum response [51]. Figure 3.4 shows a filter frequency
response with fc1 and fc2 of 4 and 8 Hz respectively and as can be observed, the
response curve at this points has a magnitude of -3 dB as stated before. The region
of the filter inside the marked rectangle is called the band-width of the filter and
can be defined as the difference between the cut-off frequency points.

An adult normal breathing rate at rest is between 12 and 20 breaths per minute,
therefore a band-pass filter with cut-off frequencies of 0.2 Hz and 0.33 Hz would
help obtaining a signal which can be assumed to represent the movement caused
by breathing, this signal will be further on referred as the breathing signal. For
heart rate, the normal range for an adult at rest is between 60 and 100 beats per
minute, therefore a band-pass filter with cut-off frequencies of 1 Hz and 2 Hz would
be able to isolate the frequency range in which heart rate can be possible found
and will be further on referred in this investigation as the heartbeat signal.

Moving Average Filter
The moving average filter (MAF) can be seen as a simple low-pass filter, used for
smoothing a signal reducing random noise while maintaining a sharp step response.
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Figure 3.4: Example of frequency response of a band-pass filter (values for cut-off
frequencies and magnitudes are approximated due to software resolution)

The MAF takes the current and previous M − 1 samples, which is called a
window, of the input signal x and calculates the average of these M samples to
produce each point in the output signal y[n] [52], defined as:

y[n] =
1

M

M−1∑
k=0

x[n− k] (3.2)

Fig. 3.5 shows a sinusoidal wave signal with random noise added and the
result of applying MAF. As can be seen, after filtering, the original signal can be
recovered.

Besides its simple implementation, it has two principal characteristics to be
considered:

1. Due the fact it requires previous values of x[n] for producing y[n] at a given
time n, MAF accumulates a time delay which increases as the window size
M increases. An alternative for reducing the time delay is using a centered
moving average filter, symmetrically choosing values around x[n], but this
involves having values ahead of the current time n.

2. As stated before, MAF acts as a low-pass filter, but it has a poor frequency
response, which can be improved increasing the window size, but this will
lead to the delay mentioned before.
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Figure 3.5: Moving average filter on a sinusoidal wave signal with random noise
added

Applying MAF to CSI subcarriers for vital sign monitoring would help remov-
ing high frequency noise where breathing and heart rate are unlikely to be found,
but if concerned about the time delay or with the frequency response that this
filter will have, an alternative can be a Savitzky-Golay Filter.

Savitzky-Golay Filters
Savitzky-Golay (SG) filters are lowpass filters, which smooth data based on lo-
cal least-squares polynomial approximation, reducing noise while maintaining the
shape and height of waveform peaks. Suppose having a signal f represented as
follows:

f(−n)..., f(−2), f(−1), f(0), f(1), f(2), ...f(n)

for each signal time step i, f(i) is replaced by the value f̂(i), obtained by fitting
a polynomial to f on the time steps between i− k and i+ k. This example works
well for understanding the main idea of SG filters, but in practice, least-squares
polynomial fitting is achieved by convolution.

The main task of this smoothing method is to find coefficients a0, ..., ad such
that the polynomial of degree d:

p(x) =
d∑
i=0

aix
i (3.3)

minimizes the mean-squared approximation error for the group of input time steps
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centered on x:
k∑

x=−k

(p(x)− f(x))2 (3.4)

being k the half width of the approximation interval (also called window length).
From equation 3.4 a matrix A of dimensions (2k + 1)X(d + 1), called the design
matrix can be obtained. The matrix product Aa, where a = [a0, a1, ..., ad]

T , gives
a column vector of values for the polynomial p. Being y = [f(−k), ..., (f(k))]T the
vector of input samples, the problem is reduced to find a vector a that minimizes
(Aa− y)2, which solution can be written as

a = (ATA)−1ATy = Hy (3.5)

The H matrix depends only on k and d and is independent of the input samples,
therefore the same coefficients will be obtained from each approximation interval
of input samples, and consequently, least-squares smoothing can be seen as a shift-
invariant discrete convolution process [53].

Figure 3.6 shows a sinusoidal wave with random Gaussian noise added and the
result of applying three different SG filters with different polynomial degree and
a fixed window length. It can be seen that the SG filters success on filtering the
high frequency noise, but the SG filter with d = 3 seems to do better than d = 11,
this is because the polynomial degree affects the slope of the frequency response of
the filter; a higher polynomial degree increases the cut-off frequency. This effect
can be seen in Figure 3.7.

Another parameter that affects the frequency response of SG filters is the win-
dow length (N). Unlike polynomial degree, a higher window length decreases the
cut-off frequency as seen in Figure 3.8.

Hampel Filter
As stated before, the Hampel filter is used for outlier removal. It identifies and
replaces outliers based on the median and the median absolute deviation (MAD)
[54].

Considering a configurable-width sliding window of time series data, for each
window, the median xm of the contained data xk is calculated and the MAD scale
estimator is defined as:

S = k ∗median(|xk1 − xm|, |xk2 − xm|, ..., |xkn − xm|) (3.6)

where k = 1.4826, which makes S equal to the standard deviation σ for normally
distributed data. A certain value xi will be defined as an outlier if:

|xi − xm| > tSk (3.7)
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Figure 3.6: Results of applying SG filters with different polynomial degrees on a
sinusoidal wave with noise

Figure 3.7: Frequency response of SG filters with different polynomial degree
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Figure 3.8: Frequency response of SG filters with different window length

where t is a configurable threshold value for outlier detection. If xi is defined as
an outlier, xi takes the value of xm [55].

Figure 3.9 illustrates how Hampel filter works, having a sine wave with some
values added intentionally as outliers, t = 3 and a window size of 6, can be seen
that the filter correctly identifies those added outliers and replaces them with a
value closer to the waveform real value in that position.

Figure 3.9: Hampel filter implementation on a sine wave
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3.3 CSI Data Calibration

For device free sensing applications using CSI, Hampel filter is applied to each
subcarrier to remove outliers which typically have significantly different values
from neighboring CSI measures.

3.3.2 Subcarrier Selection

To reduce computational cost, selection of the most representative subcarriers to
apply vital signs estimation needs to be done. The most common method in the
literature explored [29–31, 46–48] is based on the variance of CSI amplitude of
each subcarrier, selecting those with the highest variance given a time window.

It is this variance-based subcarrier selection method the one used for this in-
vestigation and it is shown in Algorithm 1, which receives as input all subcarriers’
CSI amplitudes in a time window and the number of subcarriers (n) to be selected.
This algorithm outputs are the indexes of the n subcarriers with highest variance
of CSI amplitude.

As can be seen in Fig. 3.10, the subcarrier that presented the highest variance of
CSI amplitude shows a clear sinusoidal waveform, which corresponds to a breathing
signal; while in Fig. 3.11 it is presented the 50th sensitive subcarrier if they were
in descending order according to their variance, and, as can be seen, its waveform
is clearly altered by other sinusoidal waves at different frequencies. Besides this
subcarrier selection method do not focus in frequency analysis, it seems to be
capable of identifying subcarriers where breathing is captured and therefore its
corresponding breathing rate frequency is dominant.

Figure 3.10: Subcarrier with highest variance
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Algorithm 1: Subcarrier selection algorithm

Data: subcarriersData, n
Result: n most sensitive subcarriers (ss)

1 begin
2 [sEntries, sNumber] = size(subcarriersData) // number of

entries and subcarriers of subcarriersData

3

4 for i = 1 to sNumber do
// This will be done for each subcarrier

5
∑

= 0

6 X = mean(subcarriersData[i])
7 N = length(subcarriersData[i]) // number of elements in

subcarrier

8

9 for j = 1 to N do
10

∑
=
∑

+(subcarriersData[i][j]−X)2

11 end

12 σ2[i] =
∑
N

// The variance of each subcarrier is stored

13 end
// The n subcarriers with the highest values of σ2 are

choosen as the most sensitive

14 ss = max(σ2, n)

15 end

Figure 3.11: Subcarrier that placed in 50th according to its variance

3.4 Data Analysis Tools

3.4.1 Discrete and Fast Fourier Transform

The Fourier Transform is a tool that allows to look at the frequency domain of a
signal instead of the time domain. The Discrete Fourier Transform (DFT) is the
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version of the Fourier transform that focuses in working with discrete signals. The
DFT of a signal x[n] is defined as:

X(ejω) =
∞∑

n=−∞

x[n]e−jωn (3.8)

which provides information of how x[n] consists of complex exponentials at differ-
ent frequencies [56].

Implementing directly DFT in a computer software will result inefficient due the
amount of calculations that are done in order to be computed, having a complexity
of O(N2). Fast Fourier Transform (FFT) is a version of DFT that solves this
problem with a complexity of O(NlogN) which is implemented in software such
as in MATLAB and is commonly used for analyzing the frequency properties of
a signal [50]. Given a signal x[n] = cos(2π(10)) + 2cos(2π(25)) + 5cos(2π(40)) by
applying FFT to it in MATLAB the result obtained can be seen in Fig. 3.12 where
peaks at the frequencies of 10, 25 and 40 Hz can be observed.

Figure 3.12: FFT demonstration. Left: x[n]; Right: Frequency domain obtained
with FFT on x[n]

DFT was also applied to x[n], obtaining the exactly same result, being the
execution time of the function the only difference between both of them with 0.53
milliseconds for FFT and 2.22 milliseconds for DFT.

In a CSI-based sensing application, FFT is used for analyzing the frequency
domain of each subcarrier and for extracting frequency domain features of the
signal.
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3.4 Data Analysis Tools

3.4.2 Hilbert Transform and Variational Mode Decompo-
sition

The Hilbert transform of a signal x(t) is defined as a convolution between the
Hilbert transformer 1

πt
and the signal x(t):

H(x(t)) = x(t) ∗ 1

πt
=

1

π

∫ ∞
−∞

x(τ)

t− τ
dτ (3.9)

but because convolution with Hilbert transformer is a improper integral, H(x(t))
of a signal x(t) is obtained as the Cauchy principal value P of the convolution
integral:

H(x(t)) =
1

π
pv

∫
R

f(τ)

t− τ
dτ (3.10)

Together, x(t) and H(x(t)) create an analytic signal with an amplitude and a
phase, where the derivative of the phase can be identified as the instantaneous
frequency [57], for any given time, there is only one frequency value (a scalar).
This analytic signal is defined as:

fA(t) = f(t) + jHf(t) = A(t)ejφ(t) (3.11)

The instantaneous frequency should be interpreted as a localized frequency with
a narrow band. A standard bandwidth measure v is given by:

v2 = π2(N2
1 −N2

0 ) (3.12)

where N0 is the expected number of zero crossings per unit of time:

N0 =
1

π

(
m2

m0

) 1
2

(3.13)

and N1 the expected number of extrema per unit of time:

N1 =
1

π

(
m4

m2

) 1
2

(3.14)

in which mi is the ith moment of the spectrum. For a narrow band signal v = 0,
the expected numbers of extrema and zero crossings have to be equal. Parting
from this concept, a function with the same number of extrema and zero crossings
or with a difference of at most by one will be called an intrinsic mode function
(IMF) or simply mode, from which a meaningful local instantaneous frequency can
be identified [58].

28



3.4 Data Analysis Tools

A variational model that determines the relevant bands adaptively and that
estimates the corresponding modes uk concurrently in a way that they reconstruct
the given input signal optimally adressing the presence of noise, while being band-
limited about a center frequency estimated is the Variational Mode Decomposition
(VMD). Each mode is defined as:

uk(t) = Ak(t)cos(φk(t)); (3.15)

where each mode has an instantaneous frequency φ′k(t) that is nondecreasing, varies
slowly and is concentrated around a central value fk. The process of VMD consists
of finding a set of uk(t) and fk(t) that minimizes the constrained variational prob-
lem. For obtaining the K-IMF initialized at 0, as well as the central frequencies fk
and the Lagrange multiplier λ̂, VMD iteratively update the IMF until converging
with a defined tolerance ε:∑

k

||un+1
k (t)− unk(t)||22/||unk ||22 < ε (3.16)

For the (n + 1)th iteration, VMD iterates over the K modes and obtains the
frequency-domain waveforms for each mode:

un+1
k (f) =

X(f)−
∑

i<k u
n+1
i (f)−

∑
i>k u

n
i (f) + λ̂n(f)

2

1 + 2α(2π(f − fk))2
(3.17)

and the kth central frequency:

f
(n+1)
k =

∫∞
0
f |un+1

k (f)|2df∫∞
0
|un+1
k (f)|2df

(3.18)

and finally the Lagrange multiplier:

λ̂n+1(f) = λ̂n(f) + τ

(
X(f)−

∑
k

un+1
k (f)

)
(3.19)

where α is a penalty factor and τ is the update rate of the Lagrange multiplier
[59].

Hilbert Transform and VMD will be used for analyzing CSI and for designing a
new subcarrier selection algorithm based on frequency stability in a time window
due to the fact that Hilbert Transform can provide the instantaneous frequency
for each time unit of the window.
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3.4 Data Analysis Tools

3.4.3 Visualization of High Dimensional Data

Numerous time and frequency domain features can be extracted from the breathing
and heartbeat signal, which values may be specific for a certain breathing or heart
rate. As a preview of what will be presented in further chapters, these signals will
be split in segments, and from each segment, a series of time and frequency domain
features will be extracted, obtaining what will be referred as a multi-dimensional
observation. A common way to analyze or even make use of this kind of data is
by using Data Dimensionality Reduction Techniques [60].

Principal Component Analysis

Principal Component Analysis (PCA) is a statistical technique used to reduce
the dimensionality of a dataset by finding new variables, which are linear func-
tions of the original variables of the dataset, that maximize variance and that are
uncorrelated with each other [61].

Given a dataset of dimensions n × m, where n is the number of entries or
observations and m the number of variables or better known as features, can be
also seen as a data matrix X. The main goal is to find a linear combination of the
X columns given by:

Xa =
m∑
j=1

ajxj (3.20)

where a is a vector of length m. The variance of any linear combination is given
by:

aTSa =

∑n
i=1 (xix̄)2

n
(3.21)

where S is the covariance matrix of the data matrix and aT is the transpose of a.
Therefore, in order to find the linear combination that maximizes the variance it
is needed to find the a vector that maximizes aTSa. Vector a is an eigenvector
with its corresponding eigenvalue λk of the covariance matrix S where the largest
eigenvalue and its respective eigenvector need to be found. S matrix, as other
symmetric matrix, contains n eigenvalues with their respective eigenvectors, which
are the solution to find k linear combinations:

Xak =
m∑
j=1

akjxj (3.22)

where the linear combinations Xak are called principal components.
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3.4 Data Analysis Tools

For obtaining the first principal component of the X matrix, this can be seen
as followed:

X =


x1,1 x1,2 ... x1,m
x2,1 x2,2 ... x2,m
... ... ... ...
xn,1 xn,2 ... xn,m

 ak=1 =


a1
a2
...
am



Xi,1:m ∗ a =
[
xi,1 xi,2 ...xi,m

]
∗


a1
a2
...
am

 =

m∑
j=1

xi,jaj = Yi

Y = Xak=1 =


Y1
Y2
...
Yn


where Y is the first principal component (k = 1) which can be seen as a new
representation of X in one dimension.

T-distributed Stochastic Neighbor Embedding

T-distributed Stochastic Neighbor Embedding, also known as t-SNE, is a dimen-
sionality reduction technique able to capture the global structure of data while
revealing the global structure and the presence of clusters by modeling dissimilar
datapoints by means of large pairwise distances and modeling similar datapoints
by means of small pairwise distances based on a t-Student distribution [62].

Given a dataset X, the similarity between a datapoint xj and xi is given by
the joint probability pij defined as:

pij =
pj|i + pi|j

2n
(3.23)

where as for example, conditional probability pj|i is calculated as:

pj|i =
exp(−||xi − xj||2/2σ2

i )∑
k 6=i exp(−||xi − xk||2/σ2

i )
(3.24)

where ||xi−xj|| can be replaced by a distance metric to measure distance between
xi and xj, and σi is obtained by doing a binary search given a perplexity value
usually between 5 and 50. Being Y a low-dimensional representation of X, it is
posible to obtain a joint probability qij of the counterparts xi and xj, yi and yj:

qij =
(1 + ||yi − yj||2)−1∑
k 6=l(1 + ||yk − yl||2)−1

(3.25)
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3.5 Classification Methods

If yi and yj are faithful representations of xi and xj, pij and qij will be equal.
Therefore, with t-SNE the objective is to find the Y representation that minimizes
the difference between both probabilities. In order to measure the faithfulness in
which qij represents pij, Kullback-Leibler divergence is used, minimizing the sum
in all datapoints given a gradient descent method:

δC

δyi
= 4

∑
j

(pij − qij)(yi − yj)(1 + ||yi − yj||2)−1 (3.26)

Y is obtained iteratively, given a iteration t, Y (t) is defined as:

Y (t) = Y (t− 1) + η
δC

δY
+ α(t)(Y (t− 1)− Y (t− 2)) (3.27)

where η is a learning rate and α(t) represents the momentum at iteration t, both
being inputs defined by the user.

3.5 Classification Methods

As can be seen in Chapter 2, machine learning techniques, such as classification
methods, have been used for device-free sensing with CSI applications, e.g. Sup-
port Vector Machines and K-Nearest Neighbors. In order to understand how these
classification methods work, as well as a third classification method, Quadratic
Discriminant Classifier, a brief description will be presented.

3.5.1 Support Vector Machines

Support Vector Machines model was developed to solve classification and regression
problems in machine learning. The goal is to find a model from the input feature
space i.e. mapping of the original data into a high dimensional feature space
through a kernel function, which predicts a target variable [63]. In the experiments,
a 2-degree polynomial kernel function was selected as follows:

K(Xi, Xj) = (X ′iXj + 1)2 (3.28)

where Xi and Xj are input vectors. Classification is performed by evaluating the
following formula:

y′ = sgn(w ·X′ + b) (3.29)

where w and b are obtained by solving a quadratic optimization problem; and X ′

is a test sample.
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3.5 Classification Methods

3.5.2 K - Nearest Neighbors

K-Nearest Neighbor applies the concept of similarity among samples to assign
class labels according to the assumption that similar samples belong to the same
object class [63]. The decision rule for a nearest neighbors algorithm using a single
neighbor for comparison would be:

ŷ = argmin
Xi∈Dn,θi

dist(X,Xi) (3.30)

where Dn is the training set and θi is the class or label associated to Xi. This
algorithm has a free-parameter named k which sets the number of neighbors to be
considered in the voting step to assess which will be the label to assign to the test
sample X according to a distance metric, being the euclidean distance one of the
most common, defined as:

D =

√√√√ n∑
i=1

(Xi − Yi)2 (3.31)

where D is the distance between two samples (observations), Xi and Yi the values
of their predictor variables.

3.5.3 Quadratic Discriminant Classifier

Quadratic Discriminant Classifier consists of discriminant functions that numer-
ically associate a test sample Xi to a class Ci i.e. the one with maximum value
computed as follows:

Di(X) = −1

2
XΣ−1i X ′ + µiΣ

−1
i X ′−

1

2
µiΣ

−1
i µ′ − 1

2
ln|Σi|+ ln[P (Ci)]

(3.32)

where Σi is the covariance matrix, µi the mean or centroid, and P (Ci) is the apriori
probability, all computed for each class Ci [63].

3.5.4 Performance Metrics

Performance metrics provide information of how well a classification or regression
model is by giving a quantitative and objective measurement. Focusing on classifi-
cation, these metrics allow to compare the performance of different classifiers doing
the same classification task and select the one that best resolves the classification
problem as will be seen in further chapters.

The metrics that will be used for evaluating the performance of the classifiers
that will be presented in further chapters are:
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3.5 Classification Methods

Confusion Matrix

It is a table that presents the ground-truth labels (Targets) vs. the predictions of
the classifier (Outputs). It works as a basis for obtaining other performance met-
rics. Each cell of the matrix adopts values for True Positive (TP), True Negative
(TN), False Positive (FP), and False Negative (FN) organized as in Fig. 3.13 for
a two-class classification problem.

Figure 3.13: Confusion Matrix example

Considering Class 1 as positive and Class 0 as negative, Confusion Matrix
values can be explained as:

• TP: predictions that are labeled as positive and they are truly positive.

• TN: predictions that are labeled as negative and they are truly negative.

• FP: predictions that are labeled as positive but they are actually negative.

• FN: predictions that are labeled as negative but they are actually positive.

Accuracy

It is the number of correct predictions over all predictions made, defined as

Accuracy =
TP + TN

TP + FN + FP + TN
(3.33)

It is important to notice that this metric is only meaningful if we have an equal
number of observations belonging to each class.

Precision

Proportion of positive predictions that were actually correct.

Precision =
TP

TP + FP
(3.34)
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3.6 Fresnel Zone Model

Recall

Proportion of positive predictions that were identified among all of the observations
that should have been identified as positive.

Recall =
TP

TP + FN
(3.35)

Specificity

Being the opposite of Recall, it is the proportion of negative predictions that
were identified among all of the observations that should have been identified as
negative.

Specificity =
TN

TN + FP
(3.36)

F-Score

Single measurement that can be used for representing both Precision and Recall.
It is obtained by calculating the Harmonic Mean between these two metrics.

F-Score =
2× Precision×Recall
Precision+Recall

(3.37)

ROC Curves

Receiver Operating Characteristics (ROC) curves are generated by plotting the
Recall (also referred as true positive rate) on the y-axis of a graph and the false
positive rate (1−Specificity) on the x-axis for different values of a continuous test,
resulting in a list of test values and their corresponding recall and false positive
rate. A ROC curve that follows y = x produces false positive results at the same
rate as true positive results, which is not desirable [64].

A measurement that can be obtained from ROC Curves is the Area Under the
ROC Curve (AUC), which as its name states, is the area underneath the ROC
Curve. AUC measures how much the model is capable of distinguish between
classes, considering that an AUC with a value of 1 is a model with a perfect
capability of distinguishing between classes.

3.6 Fresnel Zone Model

According to Fresnel theory, for establishing an optimal connection for commu-
nication between a receiver antenna and a transmitter antenna, the LoS between
them should be clear of obstructions, and objects inside the Fresnel zones can cause

35



3.6 Fresnel Zone Model

fading effects. Fresnel zones are a series of concentric ellipsoids drawn around the
communication terminals and, when an object appears in one of the Fresnel zones,
two paths are created in which the radio signals travel, one being the LoS path and
the other one is created by the reflection with the object. The signals that travel in
both paths are combined in the receiver antenna, creating a superimposed signal.
When the object moves while the LoS remains the same, the reflected signal from
the object changes over time and as well as the superimposed signal [65, 66].

The radius for a Fresnel zone n can be calculated following the next equation:

rn =

√
nλd1d2
d1 + d2

(3.38)

where λ is the wavelength of the signal transmitted, d1 the distance in meters
between one antenna and a point in the LoS and d2 the distance between the
second antenna and the same point [67]. A representation of these parameters is
shown in Fig. 3.14.

Figure 3.14: n−Fresnel zone representation

For CSI sensing applications Fresnel zone model has been used to provide
theoretical foundation for the physical distribution of CSI-based systems, such as
in [35] where the authors conduct all the experiments inside the first Fresnel zone
because more than 70% of the energy is located in this zone, therefore if an object
moves in this zone, the amplitude and phase of the received signal can be greatly
affected, obtaining that results for a lying subject are better if subject is nearer
the LoS inside the first Fresnel Zone, and results get worse if subject is near the
boundary for monitoring breathing rate. In [31] Fresnel zone model was also used
and authors found out that if the subject is at the middle of the 2nd and 3rd
Fresnel zone the signal peaks and valleys representing the breathing of the subject
are more defined than if at a boundary of these Fresnel zones.
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4. Proposed System

4.1 System Overview

The vital signs monitor proposed in this work consists of four main components as
shown in Fig. 4.1. At first, network packets need to be collected in order to obtain
CSI amplitudes and phase shifts. Only the amplitudes are later on calibrated
by a series of filters, and, once calibrated, time and frequency domain features
are extracted for further breathing and heart rate classification, displaying the
classification result on screen with a desktop application.

A detailed description of each system’s main component will be presented in
the following subsections.

Figure 4.1: System’s Component Diagram
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4.1 System Overview

A) CSI Data Collector
CSI data is collected using a plugin developed by Bingxian et al. [68] for Linux
802.11n CSI Tool [41]. This plugin logs the CSI data collected in the receiver to
a server being executed in MATLAB, which allows real time CSI data processing
in another computer requiring only a TCP connection with the receiver.

This component provides a stream of bytes, which contains CSI data, via socket
to the CSI Server. The CSI Server works as a bridge between the data collector
and the Breathing and Heart Rate Module, providing the CSI amplitude and phase
shift of 30 subcarriers.

B) Breathing and Heart Rate Module
The Breathing and Heart Rate Module is in charge of processing the CSI amplitude
in order to give as result a breathing range and pattern classification, as well as a
heart rate range classification, addressing the estimation of these two vital signs as
a classification problem. To achieve this task, the Breathing and Heart Rate Mod-
ule is divided into three subcomponents: the Data Calibrator, Feature Extractor,
and the Classifier components. These three subcomponents were developed using
MATLAB R2020b and run in the same platform:

• Data Calibrator: Prepares the CSI amplitude in order to obtain the breathing
signal for further processing. At first, it waits for a 40 seconds time window
of CSI amplitudes. Once collected, a Hampel identifier is applied to replace
outliers with the median of the time window. Once outliers from every
subcarrier are replaced, a Savitzky-Golay (SG) filter with a window length
of 51 is applied to smooth every subcarrier. SG filter acts as a lowpass filter,
therefore the frequency response is a thing to keep in mind, which slope is
affected by the polynomial degree as stated before. Fig. 4.2 shows the effect
of different polynomial degrees in time and frequency domain with a fixed
window length of 51; a normal adult breathing rate at rest is between 12
and 16 breaths per minute, while heart rate is between 60 and 100 heart
beats per minute, which can be translated to a frequency range of 0.2 and
0.26 Hz and 1 to 1.7 Hz respectively; hence analyzing the frequency response
for different polynomial degrees, a degree of 3 seems to filter frequencies
above 0.5 Hz, but at the same time it arises the interval between 1 to 1.5
Hz, where heart rate is more likely to be found. Therefore, SG filter degree
was set to 3 and window length of 51. After Savitzky-Golay filter is applied,
a bandpass filter with cut-off frequencies of 0.1 Hz and 0.4 Hz is applied
to every subcarrier, which is expected to extract the periodic movements
caused by breathing at rest, obtaining the breathing signal. Once subcarriers
are completely filtered, the ten most sensitive subcarriers are selected based
on a commonly used variance method [30, 31, 46–48] in order to reduce
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4.1 System Overview

Figure 4.2: Results obtained by applying Savitzky-Golay filter with different poly-
nomial degrees on CSI amplitude
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4.1 System Overview

Table 4.1: CSI Extracted Time Domain Features

TDF Formula

Mean 1
T

∑T
t=1 xt

Variance 1
N−1

∑T
t=1(xt − µ)2

Skewness 1
N

∑T
t=1(xt − µ)3/

(√
1
N

∑T
t=1(xt − µ)2

)3
Kurtosis 1

N

∑T
t=1(xt − µ)4/

(
1
N

∑T
t=1(xt − µ)2

)2

computational complexity as seen in Algorithm 1. This subcarrier selection
algorithm is only executed at the moment when the first sample window
is calibrated; for the next sample windows, calibration is only applied to
the subcarriers labeled as the most sensitive. For obtaining the heartbeat
signal, we substract the breathing signal obtained to the subcarriers filtered
with the Savitzky-Golay filter in order to remove the breathing components
from our sensitive subcarriers. Once this is done, only the first five sensitive
subcarriers are used for further heart rate processing and classification. A
bandpass filter with cut-off frequencies of 1 Hz and 2 Hz is applied to these
five sensitive subcarriers, obtaining what is expected to be the heartbeat
signal.

• Feature Extractor: This subcomponent extracts time and frequency domain
features from breathing and heartbeat signal and pass them to the next sub-
component as two different observations. From time domain, features such
as mean, variance, skewness and kurtosis [69], which can be seen in Table 4.1
along with the formula used to calculate them, are extracted by this subcom-
ponent from every sensitive subcarrier calibrated. For extracting features of
the frequency domain, Fast Fourier Transform (FFT) is applied to every
subcarrier, obtaining features such as frequency with highest amplitude and
standard deviation. Another pair of features obtained are the first breathing
and heart rate estimation, which is done by calculating the mean of each
point in the frequency spectrum between the subcarriers, obtaining what we
called the subcarriers’ mean spectrum. From this spectrum, the vital sign
is estimated by obtaining the frequency with highest amplitude, which can
be seen as the number of breaths or beats per second, therefore, by multi-
plying it by 60 seconds will give the number of breaths per minute (BrPM)
for breathing rate and beats per minute (BPM) for heart rate. This can be
summarized as follows:

FirstEstimation = argmax(meanSpectrum) ∗ 60 (4.1)

Due to the fact that body movements done by the subject or changes in the
environment (artifacts) may have a negative impact on this first estimation,
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Breathing Rate Range Class label
Below 10 BrPM 1
11 - 13 BrPM 2
14 - 16 BrPM 3
17 - 19 BrPM 4

Above 20 BrPM 5

Table 4.2: Labels assigned to breathing rate ranges

Breathing Rate Pattern Class label
Bradypnea (below 12 BrPM) 1

Normal Breathing Rate (12 - 20 BrPM) 2
Tachypnea (above 20 BrPM) 3

Table 4.3: Labels assigned according to heart rate range

this is averaged with the last three estimations in order to reduce the error
that these artifacts might produce at a certain time. The last features are
obtained by applying the Discrete Wavelet Transform (DWT) [70] of level
4 to the time domain series. For the generated detail and approximation
coefficients from each subcarrier, mean and variance are calculated. At last,
the features extracted are passed to the Classifier as two different observa-
tions, one for breathing rate classification and the other one for heart rate
classification.

• Classifier: This subcomponent receives both observations and classify the
observations in labels according to breathing rate ranges as shown in Table
4.2 and according to breathing rate patterns in Table 4.3. For heart rate
classification, heart rate ranges are labeled as shown in Table 4.4. These
classification tasks are accomplished with three different classification meth-
ods: Support Vector Machines (SVM), K-Nearest Neighbor (K-NN) and
Quadratic Discriminant Classifier (QDC).

D) CSI Vital Sign Monitor
This component is a desktop application developed using MATLAB R2020b App
Designer and it is responsible for displaying the breathing rate classification results
in real time, along with a graph that shows the last 40 seconds of CSI calibrated
amplitudes received as shown in Fig. 4.3. For heart rate classification results, this
component comes with a second function which allows to calibrate and classify

Heart Rate Range Class label
Below 60 BPM 1
61 - 80 BPM 2

Above 80 BPM 3

Table 4.4: Labels assigned according to breathing rate patterns
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4.2 Deployment

observations from a file with dat or csv extension, allowing to change filter param-
eters as well as the classification model, a feature that makes possible to process
both breathing and heart rate files. The reason why heart rate classification was
discarded for real time monitoring with this application is due to experimental
results that will be presented in the following chapters.

Figure 4.3: Real-time functioning of breathing rate monitoring using the developed
system

4.2 Deployment

Linux 802.11n CSI Tool shell scripts for collecting CSI are executed on two Intel
NUCs equipped with Intel 5300 NIC, both with Ubuntu 14.04 LTS, one working
as the transmitter (TX) sending packets, while the other one works as the receiver
(RX). RX establishes a TCP connection using sockets in order to send the CSI
data: amplitude and phase shift, to a MSI GS65 laptop executing the MATLAB
script that sets a server that listens to the socket from where CSI data is arriving,
processes the CSI data and executes the CSI Vital Sign Monitor in Windows 10
OS –see Appendix A Fig. 8.3.
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5. Methodology

In this chapter an explanation of the steps followed for collecting CSI data and
extracting time and frequency domain features in order to create the training and
test data sets for the classifiers is given. The training data set was used for training
three different classifiers per classification task: breathing rate range classification,
breathing pattern classification and heart rate range classification. Results from
this training step are also presented in this chapter. Additionally, an extra step
of data visualization is included for analyzing if clusters are formed for each class
according to the classification task.

5.1 Collecting CSI Data

Before executing the system in a real-time environment, experiments were con-
ducted in the Laboratory of Data Science and Engineering of Universidad Autónoma
de Baja California with 17 participants whose information is presented in Table
5.1. CSI data was collected using the Linux 802.11n CSI Tool [41] in order to set
up each module that compose the system proposed and test its performance, pro-
cessing the data collected as stated in the previous chapter simulating a real-time
functioning.

Participants were asked to lay on their back on a bed. Two mini-PC Intel
NUC D54250WYKH, both equipped with Intel 5300 NIC and running Ubuntu
14.04, were placed one on each side of the bed with a separation of 1.5 m, keeping
the participant’s chest in LoS or at least inside the first two Fresnel zones as in
[31]. The bed was placed at the center as seen in Fig. 5.1. One mini-PC acts as
a transmitter (TX) sending packets to the other mini-PC, which is the receiver
(RX), at 25 packets/s in the 5 GHz band. Considering the center frequency of the
5 GHz band channel selected is of 5340 MHz with a λ = 0.05614 m and the stated
distance between antennas, according to Equation 3.38, the radius of the 1st and
2nd Fresnel zone would be of 0.1451 and 0.2053 meters respectively.
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5.2 CSI Calibration and Feature Extraction

Table 5.1: Participants Information

Tag Weight (kg) Height (m) Sex Age Disease
S1 79 1.76 M 23 None
S2 47 1.58 F 23 None
S3 110 1.83 M 23 None
S4 80 1.69 M 24 None
S5 47 1.52 F 22 None
S6 53 1.55 F 24 None
S7 71 1.74 M 23 None
S8 72 1.68 M 23 None
S9 76 1.64 F 27 None
S10 69 1.6 F 64 None
S11 95 1.7 M 68 None
S12 78 1.56 F 46 None
S13 90 1.65 M 46 None
S14 80 1.6 F 48 None
S15 70 1.67 M 34 None
S16 73 1.68 M 44 None
S17 115 1.75 M 23 None

For collecting data for breathing rate classification, participants were asked to
control their breathing rate by following the beats of a metronome. Five sets of
data were collected from each participant, increasing the metronome rhythm from
18 to 42 in steps of 6 beats per minute (which corresponds to breathing rates
from 9 to 21 BrPM), having each rhythm a duration of 5 minutes. Additionally
a triaxial accelerometer was placed on each participant’s chest in order to obtain
a breathing rate ground-truth based on spectral analysis. Meanwhile, for heart
rate classification participants were asked to maintain the same position as for
breathing rate, but now wearing a Polar H9 sensor [71] for obtaining a heart rate
ground-truth; a single set with a duration of 5 minutes was obtained from each
participant.

5.2 CSI Calibration and Feature Extraction

Once data from each participant were collected, only CSI amplitude was passed
to the Breathing and Heart Rate Module in order to be processed for further
feature extraction. Fig. 5.2 shows the resultant signal from each calibration step
of a single sensitive subcarrier. As can be seen, the final result of the calibration
process for breathing signal extraction is a periodic signal.

The result of processing CSI amplitude for obtaining the heartbeat signal is
presented in Fig. 5.3. The obtained heartbeat signal remains with noise. This
situation, as well as its effect on classification, will be discussed in a next chapter.

Once breathing and heartbeat signals are extracted from CSI amplitude an
observation with a total of 160 features is formed for breathing rate classification
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5.2 CSI Calibration and Feature Extraction

Figure 5.1: Experimental scenario for collecting CSI

Figure 5.2: Result from each calibration step for breathing signal extraction
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5.3 Data Visualization

Figure 5.3: Result from each calibration step for heartbeat signal extraction

while an observation of 80 features is formed for heart rate classification. This
two observations are obtained for each time window and are later used to build
a training and test data set. The training data set contains observations of 13
participants, leaving the observations of 4 participants for the test data set.

Before training the classifiers, a data visualization step was done to analyze if
based on the features extracted, observations from each data set are grouped into
clusters according to their label.

5.3 Data Visualization

t-SNE with euclidean distance metric was implemented with the purpose of visual-
izing in two dimensions if observations are clustered according to their labels and
therefore expect promising results from the classification algorithms. As shown
in Fig. 5.4 (top-left), the observations are grouped into clusters according to the
breathing rate range. Although it was expected to form only five well divided clus-
ters, it can be seen that observations labeled as “1” are separated into two clusters
primarily divided by the observations labeled as “5”. This situation indicates that
it might be possible to divide the observations with a breathing rate below 10
BrPM into two different labels, but, as these clusters have a well defined region
in the plane, this situation is not expected to have a negative effect in further
classification, so label division will not be done.

Fig. 5.4 (top-right) shows the observations grouped into clusters by using the
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5.4 Training the Classifiers

breathing pattern as label. As can be seen, the three clusters have their own well-
defined region in the plane, being easily differentiated from each other. Therefore,
the breathing rate pattern classifier is expected to have a promising performance.

At last, t-SNE was also implemented in the heart rate data set, where heart
rate range is the class label. As can be seen in Fig. 5.4 (bottom) observations are
not grouped as for breathing data set.

In the next chapter will be observed that the K-NN for breathing rate range
and pattern classification provided a better result with Hamming distance for
breathing rate range classification and with City-block distance for breathing rate
pattern classification, therefore a t-SNE visualization with both distance metrics
was made, obtaining the projections observed in Fig. 5.5. It can be observed
that both distances achieve the task of grouping data with the same label and,
for breathing rate range data, the two groups separated labeled as class “1” with
euclidean distance now are next to each other.

From this visualization experiment, we could expect to have promising results
for both breathing rate range and pattern classification, but for heart rate range
classification two questions arise, does the signal obtained really represents the
heartbeats? are the features extracted for heart rate range classification represen-
tative? The answer for both questions will be given in the next chapter.

5.4 Training the Classifiers

Training data set is made up of 13 participants of different ages, sex and body
types, therefore it is expected to build a generalized classifier. This set was used
to train three different classifiers for each classification task: K-NN, SVM and
QDC, which hyperparameter values were found using Bayesian Optimization [72]
in order to find the configuration of the model which minimizes the cross-validation
loss. For K-NN, the hyperparameters to tune were k, the distance metric, distance
weight and data standardization, while for SVM, the hyperparameters were the box
constraint, kernel function, kernel scale, polynomial order (in case of a polynomial
kernel function) and data standardization. For QDC, hyperparameter tuning was
not needed.

Once hyperparameters were tuned using Bayesian Optimization, each classifier
was evaluated using a 10-Fold Cross-Validation with the performance metrics of
accuracy, recall, precision, specificity and F-score, along with an averaged confu-
sion matrix between folds for each classifier.

K-NN Classifier Tuning and Evaluation
The K-NN classifier hyperparameters values found with Bayesian Optimization for
breathing rate range classifications were a k = 1, hamming distance as distance
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Figure 5.4: Observations grouped in clusters according to different class label.
Top-left: Breathing rate range; Top-right: Breathing pattern; Bottom: Heart rate
range
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5.4 Training the Classifiers

Figure 5.5: t-SNE with different distance metric. Left: Hamming distance in
breathing rate range label; Right: City-block distance in breathing rate pattern
label

metric, an inverse distance weight and applying data standardization.
Evaluation results obtained by this first classifier were an average accuracy,

recall, precision, specificity and F-score between classes of 99.03%, 97.60%, 97.64%,
99.39%, and 97.62% respectively, while a breakdown of these metrics, as well as
the confusion matrix averaged across folds are presented in Table 5.2.

Table 5.2: K-NN Evaluation Results for Breathing Rate Range Classification.
Top: Confusion Matrix; Bottom: Performance Metrics

Outputs
Class 1 2 3 4 5

1 349± 0.91 6.3± 0.84 0.1± 0.1 0.5± 0.22 0± 0
2 6± 0.54 334± 0.60 4.3± 0.42 1± 0.30 0.1± 0.1

Targets 3 1.7± 0.30 7.1± 0.92 315.4± 0.90 2.4± 0.40 0.3± 0.15
4 0.8± 0.33 1.1± 0.35 2.6± 0.50 288.5± 0.75 1.3± 0.26
5 0.6± 0.22 0.7± 0.26 0.8± 0.30 1.9± 0.41 315.1± 0.50

Class Accuracy Recall Precision Specificity F-score
1 99.03% 98.06% 97.47% 99.29% 97.76%
2 98.38% 96.70% 95.66% 98.83% 96.17%
3 98.82% 96.48% 97.59% 99.41% 97.03%
4 99.29% 98.03% 98.03% 99.57% 98.03%
5 99.65% 98.75% 99.46% 99.87% 99.10%

For breathing pattern classification, hyperparameter tuning resulted in the
same values for k and distance metric as for the breathing rate range classifier. The
distance weight used for this model was squared-inverted and data standardization
was not applied. Table 5.3 shows the evaluation results obtained by this classi-
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fier, having an average accuracy, recall, precision, specificity and F-score achieved
between classes were of 99%, 98.39%, 98.37%, 99.09%, and 98.38% respectively.

Table 5.3: K-NN Evaluation Results for Breathing Pattern Classification.
Top: Confusion Matrix; Bottom: Performance Metrics

Outputs
Class 1 2 3

1 357.1± 0.78 8.5± 0.76 0± 0
Targets 2 9.3± 1.20 954.5± 1.79 3± 0.76

3 0.7± 0.26 3.1± 0.55 305.4± 0.58

Class Accuracy Recall Precision Specificity F-score
1 98.87% 97.68% 97.28% 99.22% 97.48%
2 98.54% 98.73% 98.80% 98.28% 98.76%
3 99.59% 98.77% 99.03% 99.77% 98.90%

At last, K-NN hyperparameters tuning for heart rate classification resulted in
a k equals to 6, a city-block distance metric, an inverse distance weight and ap-
plication of data standardization. Results are presented in Table 5.4, evaluation
results show an average accuracy, recall, precision, specificity and F-score between
classes of 95.4%, 89%, 93.77%, 95.04%, and 91.07% respectively. These results
seem to show that it is possible to achieve heart rate classification, but for ensur-
ing this statement, this classifier needs to be tested using the test data set of the
four remaining participants.

Table 5.4: K-NN Evaluation Results for Heart Rate Classification.
Top: Confusion Matrix; Bottom: Performance Metrics

Outputs
Class 1 2 3

1 81.1± 0.9 8.7± 0.97 0.4± 0.22
Targets 2 4.2± 0.57 199.6± 0.6 1.5± 0.43

3 1.3± 0.59 7.2± 0.73 33.8± 0.70

Class Accuracy Recall Precision Specificity F-score
1 95.68% 89.92% 93.77% 97.78% 91.74%
2 93.61% 97.22% 92.63% 88.00% 94.87%
3 96.92% 79.93% 94.91% 99.36% 86.62%

QDC Classifier
For breathing rate range classification, QDC presented an average accuracy, recall,
precision, specificity and F-score of 97.24%, 93.13%, 93.15%, 98.29%, and 93.02%
were obtained between classes respectively. The breakdown of performance met-
rics and the confusion matrix averaged across folds are presented in Table 5.5.
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Compared to K-NN for breathing rate range classification, QDC presents lower
values in the five performance metrics used.

Table 5.5: QDC Evaluation Results for Breathing Rate Range Classification.
Top: Confusion Matrix; Bottom: Performance Metrics

Outputs
Class 1 2 3 4 5

1 332.7± 1.89 6.7± 0.76 2.1± 0.81 6.5± 0.85 7.9± 1.09
2 2.2± 0.74 316.7± 1.65 9.1± 0.81 8.6± 1.33 8.8± 1.15

Targets 3 0.8± 0.42 1.8± 0.29 297± 1.75 17.9± 0.9 9.4± 1.01
4 0.1± 0.1 0± 0 6± 1.02 272.5± 2.32 16± 1
5 0± 0 0± 0 0± 0 9.1± 0.97 310± 0.92

Class Accuracy Recall Precision Specificity F-score
1 98.40% 93.48% 99.09% 99.76% 96.19%
2 97.73% 91.69% 97.39% 99.34% 94.45%
3 97.13% 90.85% 94.55% 98.69% 92.65%
4 96.09% 92.49% 86.64% 96.88% 89.45%
5 96.88% 97.15% 88.08% 96.82% 92.38%

QDC for breathing pattern classification obtained an average accuracy, re-
call, precision, specificity and F-score between classes of 95.51%, 92.08%, 92.9%,
95.72%, and 92.43% respectively, which values are lower compared to the ones
obtained by K-NN for this classification task. Table 5.6 presents the confusion
matrix averaged across folds and the performance metrics obtained for each class
for this classifier.

Table 5.6: QDC Evaluation Results for Breathing Pattern Classification.
Top: Confusion Matrix; Bottom: Performance Metrics

Outputs
Class 1 2 3

1 325± 1.25 36.7± 1.1 3.9± 0.48
Targets 2 14.3± 1.48 921.7± 2.56 30.8± 1.79

3 0± 0 24.7± 1.86 284.5± 1.91

Class Accuracy Recall Precision Specificity F-score
1 96.66% 88.89% 95.80% 98.88% 92.21%
2 93.51% 95.34% 93.76% 90.90% 94.54%
3 96.38% 92.01% 89.14% 97.40% 90.55%

For heart rate classification, QDC obtained an average accuracy, recall, preci-
sion, specificity and F-score of between classes of 86.69%, 80.25%, 83.70%, 90.51%,
and 81.24% respectively. Table 5.7 shows the confusion matrix averaged across

51



5.4 Training the Classifiers

folds as well as the breakdown of performance metrics per class.

Table 5.7: QDC Evaluation Results for Heart Rate Classification.
Top: Confusion Matrix; Bottom: Performance Metrics

Outputs
Class 1 2 3

1 79.3± 0.9 10.5± 0.87 0.4± 0.22
Targets 2 22.7± 1.62 178.4± 1.55 4.2± 0.68

3 3± 0.49 11.4± 0.98 27.9± 0.98

Class Accuracy Recall Precision Specificity F-score
1 89.16% 87.92% 75.71% 89.62% 81.29%
2 85.55% 86.90% 89.10% 83.47% 87.96%
3 94.38% 65.95% 86.31% 98.44% 74.48%

SVM Classifier Tuning and Evaluation
Hyperparameters tuning of SVM for breathing rate range classification gave as
outcome that the values of hyperparameters that result in the best model according
to our criteria (minimum loss) are a box constraint of 996.07, a polynomial kernel
function of 2nd order with an scale of 1 and applying data standardization.

It was expected that SVM for breathing rate range classification to surpass
both K-NN and QDC, but it was not the case, only surpassing QDC with an aver-
age accuracy, recall, precision, specificity and F-score of 98.20%, 95.46%, 95.49%,
98.88%, and 95.46% between classes for breathing rate range classification. A
breakdown of these metrics for breathing rate range as label is presented in Table
5.8.

For breathing rate pattern classification, the hyperparameters values obtained
were a box constraint of 0.001 with a linear kernel function with a scale of 1 and
with data standardization. The SVM with this hyperparameter configuration pre-
sented an average accuracy, recall, precision, specificity and F-score of 96.19%,
92.06%, 95.13%, 95.89%, and 93.5% between classes, while a breakdown of per-
formance metrics for each class is presented in Table 5.9, having a slightly better
performance if compared to QDC for breathing pattern classification in almost
every performance metric for the three possible classes.

The hyperparameters defined for SVM for heart rate classification were a box
constraint of 0.001 with a polynomial kernel function of 2nd order, a kernel scale of
1 and with data standardization. As with the two previous classification methods
used for heart rate range classification, this classifier presents a lower performance
if compared to breathing classification tasks, but a higher performance if compared
to the training results obtained by QDC for the heart rate classification. Training
evaluation results present an average accuracy, recall, precision, specificity and F-

52



5.4 Training the Classifiers

Table 5.8: SVM Evaluation Results for Breathing Rate Classification.
Top: Confusion Matrix; Bottom: Performance Metrics

Outputs
Class 1 2 3 4 5

1 344.8± 1.03 7.4± 0.58 1.9± 0.46 0.8± 0.25 1± 0.33
2 6.2± 0.47 330.6± 1.13 6.2± 0.8 1.4± 0.27 1± 0.26

Targets 3 1.5± 0.43 6.5± 0.58 312.6± 1.03 4.8± 0.47 1.5± 0.40
4 0.3± 0.15 0.7± 0.21 12± 1.03 278.2± 0.95 3.1± 0.60
5 0.2± 0.2 0.7± 0.26 2± 0.6 14.4± 1.07 301.8± 1.19

Class Accuracy Recall Precision Specificity F-score
1 98.82% 96.88% 97.68% 99.36% 97.28%
2 98.17% 95.72% 95.58% 98.82% 95.64%
3 97.78% 95.63% 93.44% 98.32% 94.50%
4 97.72% 94.53% 92.88% 98.41% 93.69%
5 98.54% 94.58% 97.87% 99.50% 96.19%

Table 5.9: SVM Evaluation Results for Breathing Pattern Classification.
Top: Confusion Matrix; Bottom: Performance Metrics

Outputs
Class 1 2 3

1 331.9± 2.01 33.7± 1.96 0± 0
Targets 2 6.5± 0.97 944.6± 1.72 15.7± 1.43

3 0.1± 0.1 37.9± 2.84 271.2± 2.8

Class Accuracy Recall Precision Specificity F-score
1 97.55% 90.78% 98.06% 99.48% 94.27%
2 94.29% 97.70% 92.96% 89.39% 95.27%
3 96.73% 87.71% 94.56% 98.82% 90.97%

score of 90.29%, 80.4%, 84.55%, 90.12%, and 82.14% between classes. A complete
breakdown of performance metric for each class is presented in Table 5.10.

Observing the results from the three different models used to build the clas-
sifiers, K-NN seems to outperform SVM and QDC in every classification task,
while SVM slightly outperforms QDC. With this first evaluation, we expect to get
promising results from the trained classifiers while working with the test data set,
which will give us an idea of how our experimental system will behave if deployed
in a real-time scenario.
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Table 5.10: SVM Evaluation Results for Heart Rate Classification.
Top: Confusion Matrix; Bottom: Performance Metrics

Outputs
Class 1 2 3

1 70.6± 1.14 18.4± 1.29 1.2± 0.36
Targets 2 12.7± 1.39 187.8± 1.13 4.7± 0.68

3 1.6± 0.37 10.5± 1.28 30.2± 1.17

Class Accuracy Recall Precision Specificity F-score
1 89.94% 78.28% 83.23% 94.18% 80.61%
2 86.26% 91.48% 86.69% 78.19% 89.01%
3 94.67% 71.44% 83.75% 98.00% 76.82%
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6. Results

In this section, we present the results obtained from the classifiers using a test
data set. This set consists of 5180 observations for breathing rate classification
and 1040 for heart rate classification collected from participants that were not
in the training group and were collected at a different date. We will also give
answer to the previously enunciated questions along with a new one, is it viable
to apply a dimensionality reduction algorithm for reducing the amount of features
to be processed by the classifiers?.

As we intend to deploy this experimental system in a real-time scenario, the
response time of the classifiers is a thing to keep in mind. Therefore, in this section
we introduce the response time as a new performance metric for the classifier.

6.1 Breathing Rate Range Classification

Table 6.1 shows the classification results obtained from K-NN classifier with the
test data set. As can be seen, it presents an exceptional performance with a
mean accuracy, recall, precision, specificity and F-score between classes of 99.18%,
97.95%, 97.96%, 99.49%, and 97.95% respectively, proving that this classifier gives
a reliable response even with new observations for breathing rate range classifica-
tion. The response time from the prediction of the 5180 observations was of 2.696
s.

Results obtained from QDC show a lower performance if compared to K-NN,
specifically for class 4 and 5 which recall, precision and F-score values are consider-
ably lower. The mean accuracy, recall, precision, specificity and F-score obtained
between classes were 91.35%, 78.55%, 78.81%, 94.62%, and 78.43% respectively,
while a complete breakdown of the performance metrics can be seen in Table 6.2.
The only advantage that this classifier presents when compared to K-NN is the
response time, which is of 0.070 s for all test data set observations, almost 40 times
faster than K-NN.
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Table 6.1: KNN for Breathing Rate Range Classification with Test Data Set.
Top: Confusion Matrix; Bottom: Performance Metrics

Outputs
Class 1 2 3 4 5

1 1007 4 0 8 0
2 22 1038 0 0 0

Targets 3 1 7 1029 4 0
4 9 0 1 1028 11
5 16 14 3 6 972

Class Accuracy Recall Precision Specificity F-score
1 98.84% 98.82% 95.45% 98.85% 97.11%
2 99.09% 97.92% 97.65% 99.39% 97.79%
3 99.69% 98.85% 99.61% 99.90% 99.23%
4 99.25% 98.00% 98.28% 99.56% 98.14%
5 99.03% 96.14% 98.80% 99.74% 97.49%

Table 6.2: QDC for Breathing Rate Range Classification with Test Data Set.
Top: Confusion Matrix; Bottom: Performance Metrics

Outputs
Class 1 2 3 4 5

1 842 83 31 48 15
2 77 841 120 11 11

Targets 3 1 99 913 15 13
4 0 0 103 646 300
5 0 0 0 187 824

Class Accuracy Recall Precision Specificity F-score
1 95.08% 82.63% 91.52% 98.13% 86.85%
2 92.26% 79.34% 82.21% 95.58% 80.75%
3 92.36% 87.70% 78.23% 93.86% 82.70%
4 87.18% 61.58% 71.22% 93.68% 66.05%
5 89.85% 81.50% 70.85% 91.87% 75.80%

Finally, SVM for breathing rate range classification in test data set shows a
mean accuracy, recall, precision, specificity and F-score between classes of 90.71%,
76.71%, 77.68%, 94.18%, and 76.53%. Compared to QDC, SVM shows an slight
improvement for class 1 and 2, but the recall and F-score for class 4 and 5 de-
creases considerably as can be seen in Table 6.3.In terms of response time, SVM
is also outperformed by QDC, having a total response time of 1.13 s. A bar graph
comparing the performance metrics of accuracy, recall, precision, specificity and
F-score obtained by the three classifiers is presented in Fig. 6.1.

In addition, we compute the ROC curves for each classifier, obtaining that
K-NN presents the greatest area under the curve (AUC) for each class as can be
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Figure 6.1: Results for Breathing Rate Range Classification

Table 6.3: SVM for Breathing Rate Range Classification with Test Data Set.
Top: Confusion Matrix; Bottom: Performance Metrics

Outputs
Class 1 2 3 4 5

1 873 91 3 34 18
2 57 928 65 6 4

Targets 3 2 92 945 2 0
4 11 17 316 607 98
5 5 2 31 349 624

Class Accuracy Recall Precision Specificity F-score
1 95.73% 85.67% 92.09% 98.20% 88.76%
2 93.55% 87.55% 82.12% 95.10% 84.75%
3 90.14% 90.78% 69.49% 89.97% 78.72%
4 83.92% 57.86% 60.82% 90.53% 59.31%
5 90.21% 61.72% 83.87% 97.12% 71.10%

seen in Fig. 6.2. Meanwhile, the ROC curve for class 4 obtained by SVM and
QDC presents a smaller AUC if compared to other classes, demonstrating that
both classifiers face difficulties with the class that corresponds to a breathing rate
between 17 and 19 BrPM.
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Figure 6.2: ROC Curves for the three Breathing Rate Range Classifiers

6.2 Breathing Pattern Classification

Starting with K-NN, it obtained a mean accuracy, recall, precision, specificity
and F-score of 98.60%, 97.59%, 97.16%, 95.85%, and 97.37% respectively, whose
performance metrics per class can be seen in Table 6.4. The response time obtained
is similar to the one obtained from K-NN for breathing rate range classification,
with a total response time of 2.562 s. With this response time, it is expected to
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be the slowest if compared to the other two classifiers.

Table 6.4: KNN for Breathing Pattern Classification with Test Data Set.
Top: Confusion Matrix; Bottom: Performance Metrics

Outputs
Class 1 2 3

1 1023 11 0
Targets 2 17 3107 37

3 22 22 941

Class Accuracy Recall Precision Specificity F-score
1 99.03% 98.94% 96.33% 90.06% 97.61%
2 98.32% 98.29% 98.95% 98.37% 98.62%
3 98.44% 95.53% 96.22% 99.12% 95.87%

For QDC, results presented in Table 6.5 show a lower performance when com-
pared to K-NN with a low recall for class 1 and 3, as well as a low specificity
for class 2. In brief, QDC presents a mean accuracy, recall, precision, specificity
and F-score between classes of 86.72%, 70.78%, 83.17%, 84.87%, and 75.16% re-
spectively. The only advantage of QDC over K-NN, that it is also presented for
breathing rate range classification, is the response time, which is of 0.06 s.

Table 6.5: QDC for Breathing Pattern Classification with Test Data Set.
Top: Confusion Matrix; Bottom: Performance Metrics

Outputs
Class 1 2 3

1 637 396 1
Targets 2 72 2961 128

3 0 423 562

Class Accuracy Recall Precision Specificity F-score
1 90.95% 61.61% 89.84% 98.26% 73.09%
2 80.33% 93.67% 78.33% 59.44% 85.32%
3 89.34% 57.06% 81.33% 96.92% 67.06%

Table 6.6 presents the results for breathing pattern classification obtained by
SVM, whose performance is better than QDC, but not as good as K-NN. It shows a
mean accuracy, recall, precision, specificity and F-score between classes of 93.35%,
89.32%, 88.78%, 93.93%, and 88.94% respectively. The response time is of 1.228
s, faster than K-NN but not as fast as QDC.

In order to easily compare the performance of the three different classifiers for
breathing pattern classification the performance metrics values of accuracy, recall,
precision, specificity and F-score is shown in Fig. 6.3.
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Figure 6.3: Results for Breathing Rate Pattern Classification

Table 6.6: SVM for Breathing Pattern Classification with Test Data Set.
Top: Confusion Matrix; Bottom: Performance Metrics

Outputs
Class 1 2 3

1 971 63 0
Targets 2 7 2873 281

3 0 166 819

Class Accuracy Recall Precision Specificity F-score
1 98.65% 93.91% 99.28% 99.83% 96.52%
2 90.02% 90.89% 92.62% 88.66% 91.75%
3 91.37% 83.15% 74.45% 93.30% 78.56%

At last, ROC curves were also computed for this classification task, obtaining
that K-NN is the classifier with the greatest AUC for the three different classes,
followed by SVM with AUCs of 0.9966, 0.9410 and 0.9591 as seen in Fig. 6.4 which
clearly outperform QDC.

6.3 Heart Rate Classification

Finally, heart rate classification did not go as expected based on the results ob-
tained from training evaluation. Results obtained from K-NN, which is the classi-
fier that obtained the best performance for the previous classification tasks, pre-
sented a mean accuracy, recall, precision, specificity and F-score between classes
of 56.55%, 35.91%, 40.28%, 68.03%, and 30.91%. A complete breakdown of this

60



6.3 Heart Rate Classification

Figure 6.4: ROC Curves for the three Breathing Pattern Classifiers
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performance metrics can be seen in Table 6.7. This performance shows that we
can not rely on the response of this classifier, situation that will be also repeated
for the next two classifiers.

Table 6.7: KNN Performance for Heart Rate Classification with Test Data Set.
Top: Confusion Matrix; Bottom: Performance Metrics

Outputs
Class 1 2 3

1 84 259 26
Targets 2 66 227 22

3 53 257 46

Class Accuracy Recall Precision Specificity F-score
1 61.15% 22.76% 41.38% 82.27% 29.37%
2 41.92% 72.06% 30.55% 28.83% 42.91%
3 66.58% 12.92% 48.92% 92.98% 20.44%

As same as K-NN, QDC presents a poor performance for heart rate classifi-
cation, with a mean accuracy, recall, precision, specificity and F-score between
classes of 55%, 34.61%, 37.01%, 67.23% and 26.16% respectively while Table 6.8
shows the complete breakdown of these metrics.

Table 6.8: QDC Performance for Heart Rate Classification with Test Data Set.
Top: Confusion Matrix; Bottom: Performance Metrics

Outputs
Class 1 2 3

1 53 296 20
Targets 2 47 258 10

3 65 264 27

Class Accuracy Recall Precision Specificity F-score
1 58.85% 14.36% 32.12% 83.31% 19.85%
2 40.67% 81.90% 31.54% 22.76% 45.54%
3 65.48% 7.58% 47.37% 95.61% 13.08%

SVM did not present better results, as can be seen in Table 6.9, presenting a
mean accuracy, recall, precision, specificity and F-score of 55.06%, 34.54%, 36.68%,
67.23% and 27.82% respectively. A bar graph comparing the performance metrics
previously mentioned of the three different classifiers is shown in Fig. 6.5.

ROC curves in Fig. 6.6 show that the three classifiers tend to give a random or a
constant class as response as seen in the different confusion matrices obtained (see
Table 6.7,6.8 and 6.9) where the three classifiers mostly labeled the observations
as class 2. This poor performance is due to two reasons, first, we can not vary
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6.3 Heart Rate Classification

Figure 6.5: Results for Heart Rate Range Classification

Table 6.9: SVM Performance for Heart Rate Classification with Test Data Set.
Top: Confusion Matrix; Bottom: Performance Metrics

Outputs
Class 1 2 3

1 50 288 31
Targets 2 52 243 20

3 56 254 46

Class Accuracy Recall Precision Specificity F-score
1 58.94% 13.55% 31.65% 83.90% 18.98%
2 40.96% 77.14% 30.96% 25.24% 44.18%
3 65.29% 12.92% 47.42% 92.54% 20.31%

our heart rate at will at rest, which will lead to have unbalanced data for each
class as can be seen in evaluation results from training phase where most of the
data collected is labeled as class 2, which is a heart rate range between 60 and 79
BPM, a normal rate at rest, but less than the half are class 1 (below normal heart
rate at rest) and we got even less data labeled as class 3 (above 80 BPM), which
was intended to be an elevated heart rate (above 100 BPM), but we did not get
data from that heart rate range from neither of our participants. We could have
expanded our class 3 range to be above 70 BPM and keep our class 2 in a range
of 60 to 70 BPM to have a more balanced number of observations per class, but
before we decided to do that, a question arises which answer is the second reason:
are we really obtaining the heartbeat signal and therefore, obtaining particular
feature values from each heart rate range?
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Figure 6.6: ROC Curves for the three Heart Rate Pattern Classifiers

6.4 Processing Heart Rate Data from Faraday

Cage

To answer the previous stated questions, the experimental system was isolated from
potential interfering RF signals from external sources. By isolating our system,
we expect to discard the possibility that an interfering RF signal (from external
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sources or due to reflections with environment changes) has a larger magnitude
than the heartbeat signal that we want to identify. To achieve this, we collected
data inside a Faraday Cage to obtain what is assumed to be the heartbeat signal.
A single participant was positioned at the center of the cage, and the equipment
was set with the same configuration described in chapter 5 to collect data. Once
sufficient data was available, the filters used for calibration were applied, and
spectral analysis was performed.

A similar behavior from the spectral analyses performed in the Laboratory of
Data Science and Engineering and in the Faraday Cage was observed. There were
no significant peaks at the expected heart rate frequencies between 1.1 and 1.15
Hz (corresponding to heart rates between 66 and 70 BPM). Instead, we found
significant peaks before 1 Hz and after 1.4 Hz for the Faraday Cage experiment
as seen in Fig. 6.7, where the normalized magnitude spectrum obtained in the
Laboratory of Data Science and Engineering (also shown) has the same behavior.

Figure 6.7: Frequency domain obtained with FFT for the two experimental scenar-
ios. Left: Faraday Cage Experiment Scenario; Right: Initial Experiment Scenario

Based on this result, we can deduce that those frequency peaks are generated by
our own equipment, hence, giving answer to the previous questions presented, we
are being limited by our own equipment for obtaining a reliable heartbeat signal,
and therefore the feature values obtained are really characterizing the noise. A
solution for this might be using directional antennas such as in [73], where they
also stated that using an antenna array will be more beneficial.

6.5 Reducing Data Dimensionality

Finally, we did a final experiment in order to enhance the response time by apply-
ing a dimensionality reduction algorithm. For this, we use Principal Component
Analysis [61] for extracting the first three principal components of the training and
test breathing rate range dataset. In Fig. 6.8 is presented the result obtained from
applying PCA to the training dataset, where as in t-SNE, data from each label are
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grouped in a well-formed region of the 3-Dimensional Space. The reason of using
PCA instead of t-SNE is that PCA can be easily used for new incoming data by
saving the mean, standard deviation and the eigenvectors of previous entries.

Figure 6.8: Space obtained with PCA for Breathing Rate Range Data Set

Once the three principal components of the training data set were obtained,
they were used for training three classifiers whose hyperparameters were defined by
Bayesian Optimization. The mean, standard deviation and eigenvectors obtained
for reducing dimensionality of the training data set were used for obtaining the
three principal components of the test data set.

For KNN with chebychev distance, k = 33, with an inverse distance weight and
with data standardization, an average accuracy, recall, precision, specificity and F-
score between classes of 92.35%, 80.93%, 81.07%, 95.20%, and 80.49% respectively
(see Table 6.10 for a breakdown of these performance metrics) were obtained from
the test data set. This is a significant lower performance compared to KNN for
breathing rate range classification without PCA, but, as expected, the response
time was improved with only 0.07 s for classifying the whole data set.

QDC obtained an average accuracy, recall, precision, specificity and F-score
between classes of 92.81%, 82.10%, 82.56%, 95.51%, and 81.49% with a response
time of 0.047s, being faster than KNN and an improvement if compared to its
version without PCA, but its recall and F-score for class 4 are worse.

The best hyperparameters for SVM found with Bayesian Optimization are a
third order polynomial kernel function with a box constraint of 0.1069 and with
data standardization. With this configuration, the PCA version of SVM presented
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Table 6.10: KNN for Breathing Rate Range Classification with PCA Data Set.
Top: Confusion Matrix; Bottom: Performance Metrics

Outputs
Class 1 2 3 4 5

1 853 162 4 0 0
2 44 959 56 0 1

Targets 3 1 15 940 84 1
4 0 2 200 579 268
5 0 0 24 128 859

Class Accuracy Recall Precision Specificity F-score
1 95.93% 83.71% 94.99% 98.82% 88.99%
2 94.59% 90.47% 84.27% 95.66% 87.26%
3 92.57% 90.30% 76.80% 93.14% 83.00%
4 86.83% 55.20% 73.20% 94.87% 62.93%
5 91.85% 84.97% 76.06% 93.52% 80.28%

Table 6.11: QDC for Breathing Rate Range Classification with PCA Data Set.
Top: Confusion Matrix; Bottom: Performance Metrics

Outputs
Class 1 2 3 4 5

1 842 174 3 0 0
2 61 940 59 0 0

Targets 3 1 6 974 60 0
4 0 1 150 575 323
5 0 2 15 76 918

Class Accuracy Recall Precision Specificity F-score
1 95.39% 82.63% 93.14% 98.51% 87.57%
2 94.15% 88.68% 83.70% 95.56% 86.12%
3 94.32% 93.56% 81.10% 94.52% 86.89%
4 88.22% 54.81% 80.87% 96.71% 65.34%
5 91.97% 90.80% 73.97% 92.25% 81.53%

an average accuracy, recall, precision, specificity and F-score between classes of
92.79%, 81.99%, 82.43%, 95.49%, and 81.45%. A breakdown of these metrics
is presented in Table 6.12. This version presents a better performance than its
previous version, but recall for class 4 and precision for class 5 values are slightly
lower. The response time of this classifier is slower than KNN and QDC with 0.169
s for the whole PCA test data set, but considerably faster compared to its version
without PCA.

ROC Curves for these classifiers version were also computed and are presented
in Fig. 6.9. As can be seen, SVM and QDC with PCA are better classifiers that
their versions without PCA based on the AUCs (see Fig. 6.2, but KNN presents

67



6.6 The Hilbert Transform-based Subcarrier Selection Algorithm

Table 6.12: SVM for Breathing Rate Range Classification with PCA Data Set.
Top: Confusion Matrix; Bottom: Performance Metrics

Outputs
Class 1 2 3 4 5

1 831 185 3 0 0
2 36 975 47 0 2

Targets 3 1 9 992 38 1
4 0 1 213 581 254
5 0 1 18 125 867

Class Accuracy Recall Precision Specificity F-score
1 95.66% 81.55% 95.74% 99.11% 88.08%
2 94.58% 91.98% 83.26% 95.24% 87.40%
3 93.63% 95.29% 77.93% 93.21% 85.74%
4 87.82% 55.39% 78.09% 96.05% 64.81%
5 92.26% 85.76% 77.14% 93.84% 81.22%

lower values than its version without data dimensionality reduction, demonstrating
that if we want the classifier with the greatest performance, the best option is KNN
with the 160 features.

6.6 The Hilbert Transform-based Subcarrier Se-

lection Algorithm

A low-pass filter with a fc of 2 Hz and a detrend method which consisted in
subtracting the mean value of each CSI amplitude subcarrier were applied in a time
window of 40 seconds in order to locate if in one of the IMFs or modes, breathing
can be identified along with the instantaneous frequency for each subcarrier. It
is expected that if breathing signal can be obtained by this method, the Hilbert
spectrum for a constant breathing rate would be a straight line or at most present
small variations around the breathing rate frequency. 8 modes were extracted from
a breathing sample of 15 BrPM and it can be observed that the breathing signal
from a single subcarrier is located in the 7th mode and its Hilbert spectrum shows
small variations around 0.25 Hz (15 BrPM) with higher energy if compared to the
Hilbert spectrum of the 6th mode as seen in Fig. 6.10.

The same procedure was followed for a breathing sample of 21 BrPM, which
results showed that for this sample, breathing signal can be also located in the
6th mode as shown in Fig. 6.11, in which its Hilbert spectrum shows that the
instantaneous frequency variates around 0.35 Hz (21 BrPM) and it has more energy
if compared to the Hilbert spectrum of the 7th. Based on these results, it can be
concluded that modes which can be identified as the breathing signal have more
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Figure 6.9: ROC Curves for the three different classifiers for PCA Dataset

energy in the Hilbert spectrum around the frequency range in which breathing
rate is normally located compared to other modes in the same range.

From this experiment, the idea of a subcarrier selection method based on
Hilbert spectrum arose. With the first time window of 40 seconds of CSI am-
plitudes, VMD is applied to every subcarrier for extracting 8 modes from which
Hilbert spectrum is obtained. Next, in order to find in which mode breathing signal
is located, the mode with highest energy around the normal breathing frequency
range in the time window is selected. Finally, for selecting the sensitive subcar-
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Figure 6.10: Results of applying VMD and Hilbert Transform on VMDs on a single
subcarrier of a 15 BrPM sample. Left: IMFs obtained by VMD; Right: Hilbert
Spectrum of the 6th and 7th IMF

Figure 6.11: Results of applying VMD and Hilbert Transform on VMDs on a single
subcarrier of a 21 BrPM sample. Left: IMFs obtained by VMD; Right: Hilbert
Spectrum of the 6th and 7th IMF

riers, the variance of instantaneous frequencies of the previous selected modes is
calculated, and knowing that breathing rate changes do not occur immediately,
the sensitive subcarriers are the ones with minimum variance of instantaneous
frequencies. The algorithm for this sensitive subcarrier selection method using
MATLAB functions is presented in Algorithm 2.

For evaluating the performance of this proposed method, the first breathing
rate estimation based on the frequency with highest amplitude obtained by using
FFT was calculated on subcarriers selected by this method from the same CSI data

70



6.6 The Hilbert Transform-based Subcarrier Selection Algorithm

collected from the 17 participants. Using this proposed method, the root mean
square error (RMSE) was of 1.59 BrPM, while for the common variance subcarrier
selection method the RMSE obtained was of 1.90 BrPM.

Algorithm 2: Algorithm for selecting sensitive subcarriers based on
Hilbert Transform using MATLAB functions

Data: n, numIMFs, subcarriersData, fs, IMFindexes
Result: n most sensitive subcarriers(ss)

1 begin
2 [sEntries, sNumber] = size(subcarriersData) // number of

entries and subcarriers of subcarriersData
3

4 for i = 1 to sNumber do
// apply VMD to each subcarrier obtaining numIMFs of

IMFs

5 [imfs,∼] = vmd(subcarriersData(:, i),’NumIMF’,numIMFs)
// obtain instantaneous frequency and energy using hht

function

6 [insf ,inse] = hht(imfs(:,imfIndexes),fs)
// find the IMFs were most of the energy is found

7 [∼,idxMaxE] = max(mean(inse))
// Obtain the instantaneous frequency variance from the

IMFs with more energy

8 imfV ar(i) = var(insf(:, idxMaxE))

9 end
// find the n subcarriers with less instantaneous

frequency variance

10 [∼,idx] = mink(imfV ar,n)
11 ss = subcarriersData(:,idx);

12 end
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7. Conclusions and Future Work

7.1 Conclusions

The use of CSI of a Wi-Fi signal seems to be a promising mechanism for wireless
sensing applications, but its implementation in not controlled environments is still
a challenge with issues such as the interference created by other Wi-Fi devices and
even from other people’s movements, requiring to add more signal processing steps
with different techniques for mitigating a specific interference. In this investigation
it was not only presented a vital signs monitoring system along with a detailed
explanation of its components, but also a detailed analysis that could be done in
other CSI-based systems using Data Mining and Artificial Intelligence tools and
techniques, which can be seen as the main contribution of this investigation.

Based on the results obtained during the development of this investigation, the
following particular conclusions were drawn:

1. By analyzing the frequency spectrum with the Fourier and Hilbert transform
of CSI data, it can be seen that sensitive subcarriers capture the chest move-
ments caused by human breathing. Based on investigations done by other
scientists, there is no doubt that the Fresnel zone model theory provides a
fundamental basis for the positioning of the system’s antennas and subject,
enhancing the capturing of chest movements.

2. Realiable breathing rate monitoring using CSI of a Wi-Fi signal can be
achieved by employing Artificial Intelligence tools such as machine learning
methods along with the conventional approach. For heart rate monitoring,
results show that for achieving a generalized reliable model, a more complex
and expensive approach must be used, such as directional antennas or an an-
tenna array for obtaining a clear heartbeat signal, where artifacts generated
by the proper equipment do not have a higher presence than the heartbeat
signal.
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3. K-NN was the classification method with highest accuracy, precision, recall,
specificity, F-score and AUC, but it is also the slowest due to the fact that
each new observation needs to be compared with the training data. For a
faster approach, PCA can be applied or QDC classifier can be used, but
sacrificing recall and precision. Further performance tests for a real-time
environment need to be done.

4. The selection of sensitive subcarriers proved to be a task such as an im-
portant as signal processing as well as it reduces computer complexity for
further tasks. By maintaining the same calibration steps but using the VMD
and Hilbert transform based subcarrier selection method, a lower error was
reported compared to the one obtained by the common variance selection
method. The execution time of the proposed method needs to be considered
due to the fact that it is considerably higher, however, it is only executed
once.

7.2 Future Work

As future work, the next tasks are considered to be addressed as well as the
following lines of investigation arose:

1. As stated before, not all network devices provide CSI data and actually
the most common CSI collecting tool is the Linux 802.11n CSI tool, but
it requires an specific network device, the Intel 5300 NIC. This hardware
limitation results unpractical for a large-scale deployment as it requires a
computer equipment only for collecting and transferring CSI data. A new
investigation can be the transferring of this whole system to embedded de-
vices and using the ESP32 CSI Toolkit for collecting CSI data, which might
result in a more affordable solution, comparing its performance with solu-
tions such as the stated in this investigation. It is of our interest the use of
Field Programmable Gate Arrays (FPGA) for processing CSI data.

2. Besides exploring the breathing and heart rate classification, the deployment
of the system for investigation purposes only provides a breathing rate range
as response. This response can be used as feedback for the Data Calibrator
subcomponent for the next breathing rate estimation and therefore adjusting
filter parameters for a precise estimation which can be provided to the final
user as response. In short, a closed loop system.

3. The implementation of directional antennas or antenna arrays for extracting
the heartbeat signal, along with the heart rate estimation and classification
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of multiple people with different types of body and ages in order to ensure
the functioning of the system.

4. A literature review of different sensitive subcarrier selection methods as well
as a benchmark of these methods with the one proposed in this investigation.

5. The design of a Plug-and-Play network device for collecting CSI data for
facilitating CSI investigations along with a desktop application that allows
its configuration, such as network band or sample frequency (known also as
packet rate), and basic signal processing for sensing applications.
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8. Appendix A

Software Diagrams and Captures

Figure 8.1: Use-case Diagram
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Figure 8.2: Class Diagram

Figure 8.3: Deployment Diagram
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Figure 8.4: Processing a dat file with the developed system
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9. Appendix B

Products of this Thesis

Conferences

1. A. Armenta-Garcia, F. F. Gonzalez-Navarro, J. Caro-Gutierrez, B. L. Flores-
Rios and J. E. Ibarra-Esquer, “BReML: A Breathing Rate Estimator Using
Wi-Fi Channel State Information and Machine Learning”, 2021 Mexican
International Conference on Computer Science (ENC), 2021, pp. 1-8, doi:
10.1109/ENC53357.2021.9534797.

Contests

1. First place in “Concurso de Innovación en Ciencia y Tecnoloǵıa RGMX Japón
2021” that took place in the “Simposio Virtual RGMX Japón 2021” orga-
nized by “Red Global MX Caṕıtulo Japón”.

2. Participation in “Encuentro Estatal de Jóvenes Investigadores BC 2021”
organized by “Universidad Autónoma de Baja California”

In Process

1. Database register in INDAUTOR titled “Base de Datos Generada a Partir
del Procesamiento de la Información de Estado del Canal Generada por
Dispositivos de Red ante Distintas Frecuencias Respiratorias de Sujetos en
Reposo”.

2. Software register in INDAUTOR titled “CSIVSMonitor: Software para Esti-
mación de Frecuencia Respiratoria a partir de CSI utilizando Procesamiento
Digital de Señales y Aprendizaje Automático”.
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3. A. Armenta-Garcia, F. F. Gonzalez-Navarro, J. Caro-Gutierrez, G. Galaviz-
Yanez, J. E. Ibarra-Esquer, W. Flores-Fuentes, “Mining Wi-Fi Channel State
Information for Breathing and Heart Rate Classification”, Pervasive and
Mobile Computing, 2022 (in review).
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