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RESUMEN de la tesis de Francisco Javier Ramı́rez Arias, presentada como re-
quisito para obtener el grado de DOCTOR en CIENCIAS, del programa de Maestŕıa y
Doctorado en Ciencias e Ingenieŕıa de la Universidad Autónoma de Baja California. Ensena-
da, Baja California México, Diciembre 2022.

Control de mecanismos por medio de señales electroencefalograficas

Resumen aprobado por:

Dr. Everardo Inzunza González Dr. Enrique Efrén Garćıa Guerrero

Director de tesis Co-Director de tesis

En las interfaces cerebro-computadora (ICC), es crucial el análisis y el procesamiento de
las señales electroencefalograficas (EEG) para mejorar la precisión de su clasificación, con
proposito de lograr su aplicación en movimientos motores. Los algoritmos de aprendizaje
máquina entre los que destacan ANN, CNN, SVM, entre otros, han realizado un progreso
significativo dentro de este ámbito. Los objetivos de este trabajo es presentar el análisis y
el procesamiento de las señales EEG utilizando diferentes técnicas de extracción de carac-
teŕısticas para entrenar diversos algoritmos de clasificación con proposito de clasificar señales
relacionadas a los movimientos motores. Los movimientos motores considerados provienen de
la mano izquierda, mano derecha, ambos puños, pies y relajación, haciendo este un proble-
ma multiclase. En este trabajo, nueve algoritmos de aprendizaje maquina fueron entrenados
mediante un conjunto de datos creado a partir de la extracción de caracteŕısticas de señales
EEG. Las señales EEG de 30 sujetos de la base de datos PhysioNet fueron utilizados pa-
ra crear el conjunto de datos relacionado a los diferentes movimientos. Se han utilizado los
electrodos C3, C1, CZ, C2, y C4 de acuerdo al estándar 10-10. Posterioremene se realizó la
extracción de segmentos de señales EEG en donde fueron aplicadas una serie de medicio-
nes relacionadas a parametros de tiempo y frecuencia, para obtener un conjunto de quince
caracteŕısticas. Se desarrolló una aplicación hecha a la medida en la versión de LabVIEW
2015™para la lectura de las señales EEG, la selección de canales, filtrado del ruido, selección
de banda, las operaciones de extracción de caracteŕısticas, aśı como para la generación del
archivo del conjunto de datos. El entorno de desarrollo de Matlab 2021™fue utilizado para
el entrenamiento, prueba y evaluación de las métricas de desempeño de los algoritmos de
aprendizaje máquina. Dentro de este trabajo el modelo que presento las mejores métricas
de desempeño fue la red neuronal artificial media con un área bajo la curva promedio de
0.9998, un coeficiente Cohen Kappa de 0.9552, un coeficiente de correlación de Matthews de
0.9819 y una perdida de 0.0147. Estas métricas sugieren la aplicabilidad de nuestro enfoque
en diferentes escenarios, como la implementación en prótesis robóticas, donde el uso de ca-
racteŕısticas superficiales es una opción aceptable debido a que los recursos son limitados,
como en un sistema embebido y dispositivos de cómputo limitados.

Palabras clave: BCI; extracción de caracteristicas; inteligencia artificial; aprendizaje máqui-
na; aprendizaje profundo; redes neuronales artificiales; comandos mentales; clasificación de
señales; reconocimiento de patrones.
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Thesis ABSTRACT of Francisco Javier Ramı́rez Arias, presented as requirement
to obtain the degree of DOCTOR in SCIENCES, from the program of Master and Doc-
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Baja California México, December 2022.

Control of mechanisms through electroencephalographic signals

Abstract approved by:

Dr. Everardo Inzunza Gonzalez Dr. Enrique Efrén Garćıa Guerrero
Director of thesis Co-director of thesis

In Brain–Computer Interfaces (BCIs), it is crucial to process brain signals to improve
the accuracy of the classification of motor movements. Machine learning (ML) algorithms
such as artificial neural networks (ANNs), linear discriminant analysis (LDA), decision tree
(D.T.), K-nearest neighbor (KNN), naive Bayes (N.B.), and support vector machine (SVM)
have made significant progress in classification issues. This paper aims to present a signal
processing analysis of electroencephalographic (EEG) signals among different feature extrac-
tion techniques to train selected classification algorithms to classify signals related to motor
movements. The motor movements considered are related to the left hand, right hand, both
fists, feet, and relaxation, making this a multiclass problem. In this study, nine ML algo-
rithms were trained with a dataset created by the feature extraction of EEG signals. The
EEG signals of 30 Physionet subjects were used to create a dataset related to movement. We
used electrodes C3, C1, CZ, C2, and C4 according to the standard 10-10 placement. Then, we
extracted the epochs of the EEG signals and applied tone, amplitude levels, and statistical
techniques to obtain the set of fifteen features. LabVIEW™2015 version custom applications
were used for reading the EEG signals; for channel selection, noise filtering, band selection,
and feature extraction operations; and for creating the dataset. MATLAB 2021™was used
for training, testing, and evaluating the performance metrics of the ML algorithms. In this
study, the model of Medium-ANN achieved the best performance, with an AUC average of
0.9998, Cohen’s Kappa coefficient of 0.9552, a Matthews correlation coefficient of 0.9819,
and a loss of 0.0147. These findings suggest the applicability of our approach to different
scenarios, such as implementing robotic prostheses, where the use of superficial features is
an acceptable option when resources are limited, as in embedded systems or edge computing
devices.

Keywords: EEG; BCI; feature extraction; artificial intelligence; machine learning; deep lear-
ning; artificial neural network; mental commands; signal classification; pattern recognition.

iv



Dedicatoria y agradecimientos

Este trabajo de tesis es dedicado a las personas que han contribuido de alguna forma en mi 
formación personal, profesional y académica. Está dedicado a las personas que siempre han 
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padre. Con especial cariño se le agradecé a mi t́ıo Norberto Arias de los Palos durante el 
apoyo brindado desde que tengo uso de razón.
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continúen otorgando a los profesores que formamos parte de la máxima casa de estudios. Por 
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Introduction

For more than 80 years, the brain’s electrical activity can be recorded through electrodes

placed on the surface of the skull Niedermeyer and da Silva (2005). This non-invasive neu-

roimaging technique, called electroencephalography (EEG), has made it possible to monitor

brain activity. In 1973, the concept of brain-computer interface (BCI) was introduced Vidal

(1977), a technology that uses EEG. Both technologies have been used in different fields of

application. In the field of medicine they are used for the prediction and diagnosis of va-

rious clinical conditions such as; prediction of sleep disorders Kupfer et al. (1978); Kazemi

et al. (2022); Tiwari and Arora (2022), attention deficit Ghaderyan et al. (2022), hyperacti-

vity disorders Mahmoud et al. (2021), seizure disorders Affes et al. (2022); Mormann et al.

(2000), peripheral neuropathies Bismuth et al. (2020) and musculoskeletal diseases Wei et al.

(2010), prediction of epileptic seizures Shen et al. (2022); Tuncer and Bolat (2022); Ruijter

et al. (2018), diagnosis of disorder of consciousness Bai et al. (2021); Lei et al. (2022), detec-

tion of tumors and concussions Abdulkader et al. (2015b); Selvam and Shenbagadevi (2011).

These have also been used for the early determination of neurodegenerative disorders such

as Alzheimer’s Jeong (2004), Parkinson’s Soĺıs-Vivanco et al. (2018), and different types of

dementia Stylianou et al. (2018).

One of the areas of research and application of computational sciences uses brain-computer

interfaces (BCI), which translate brain signals into control commands that allow the user to

communicate with the machine without the participation of muscles and peripheral nerves.

BCI, in its simplest structure, can be considered an EEG device. The BCIs allow capturing

different signals from the brain’s surface, just like the EEG, with the main difference being

that these signals are analyzed and processed in real-time. These electrical signals are capable

of providing us with information about both the hemispheres and the different areas that

the human brain has. The information provided by these electrodes can not only be used for

the diagnosis and detection of tumors, brain injuries, sleep disorders, mental illnesses, and

the diagnosis of psychological disorders. These also allow us to obtain information about the

motor movements of the human body, such as hands, arms, legs, and feet, which can be used

in applications of a biomedical, robotics, and assistance robotics.
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In order to measure and record the brain’s activities, different neuroimaging techniques are

used, including magnetoencephalography (MEG) Gross (2019), electrocorticography (ECoG)

Ince et al. (2009), intracortical neuronal recording, functional magnetic resonance (fMRI) Son

et al. (2020), near-infrared spectroscopy (NIRS) Coyle et al. (2004), and electroencephalo-

graphy (EEG), the latter being the neurophysiological technique Ramadan and Vasilakos

(2017) most widely accepted by the scientific community and the private sector in the deve-

lopment of research in fields such as neuroscience, robotics, home automation, the Internet

of Things, education, etc. Fontanillo Lopez et al. (2020).

EEG can be carried out using multiple electrodes placed under different international

systems. The electrodes are considered an essential component in these systems because they

must have good conductivity and contact with the surface, which improves the quality of

the signal to be measured. These standards must be adhered to when attempting to conduct

a clinical diagnosis. However, there is no standard definition for applications related to the

control of robotic prostheses and mobile robots. Different research works focus on improving

the electrodes because digital filtering functions can be embedded in them.

The data obtained through the different neuroimaging techniques can provide us with

qualitative and quantitative information on the different brain regions, establish correlations

and generate mathematical models, predictive models, and models that allow the classifi-

cation of these data with a high percentage of reliability. Currently, it is possible to obtain

information from specific parts or regions of the brain using a certain number of electrodes. It

provides an alternative of cost, safety, portability, and reliability. These allow for establishing

an effective neuroimaging method that covers many applications. However, some of the de-

tails that electroencephalography presents are that it has a low spatial resolution but good

temporal resolution, and the signal-to-noise ratio is sometimes low because the electrodes are

not at the origin of the signal. Different types of artifacts are present in EEG signals, caused

by AC line noise, eye movements, and eye movements, among others.
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Backgroung

Electroencephalography (EEG) is a non-invasive procedure for measuring the electrical

activity generated within the brain as a result of different mental processes Esqueda-Elizondo

et al. (2022). The electrical signals are acquired through electrodes placed on the scalp’s

surface; thus, waves with different amplitudes and frequencies that refer to a person’s mental

state are obtained Teplan (2002). The frequency ranges span from 0 Hz to 100 Hz. Based

on these ranges, the signals are classified as follows: delta, which ranges from 1 Hz to 4

Hz; theta, which contains signals from 4 Hz to 8 Hz; alpha, where the information range is

between 8 Hz and 12 Hz; beta, where the range is between 12 Hz and 30 Hz; and gamma,

with a range that covers from 30 Hz to 100 Hz Tiwari et al. (2018); Luján et al. (2021).

Different ranges of signals are essential for identifying different clinical problems, such as

schizophrenia Shoeibi et al. (2021), Alzheimer’s, insomnia, epileptic disorders, brain tumors,

and different injuries and infections related to the central nervous system. Furthermore,

classification of motor impairment in neural disorders by means of EEG signals processing, has

been a successful method for identifying central nervous system’s roots of motor disabilities

Vrbancic and Podgorelec (2018). Compared with other methods, this neuroimaging technique

offers advantages such as portability, temporal resolution, safety, cost, small time constants,

simple equipment, and effectiveness Abdulkader et al. (2015a).

The EEG neuroimaging method is the preferred method for developing Brain–Computer

Interfaces (BCIs), both in the academic community and the private sector. Historically, BCI

has been clinically applied for understanding motor impairment, both in verbal communica-

tion Neuper et al. (2003), limb movement Bartur et al. (2019), as well as cognitive impairment

Sergeev et al. (2021), and offer a great advantage over electromyography pattern recognition

Samuel et al. (2017b) due to the lack of neuromuscular signals under amputation conditions.

BCIs are direct communication and control channels between users’ brain and computers

where muscle activity is not involved Wang et al. (2015); Zander and Kothe (2011). They

are currently considered a powerful communication technology as they do not involve mus-

cular routes to complete tasks such as communication, commands, and actions. The basis of

these systems is the computer, whose central role is the analysis of EEG signals Aggarwal

and Chugh (2019); Mudgal et al. (2020). BCIs are classified as exogenous and endogenous.

Exogenous BCIs require external conditions or stimuli so that the brain can generate a
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particular response based on the stimulus. Endogenous BCIs do not require external stimu-

lation; however, they require some training on the user’s part so that they can regulate brain

rhythms Mudgal et al. (2020). Despite the differences mentioned, most BCI models contain

the following elements: signal acquisition, information preprocessing, feature extraction, and

classification Brunner et al. (2015); Abdulkader et al. (2015a). The acquisition of signals is

carried out employing electrodes placed on the scalp’s surface Jurcak et al. (2007), through

which analog signals are obtained and then digitized by means of analog–digital converters.

The next step is the preprocessing of the signals, whereby the following are removed: noise

induced by the electrical line; the background noise of the brain; various artifacts that the

EEG signals present as a result of some muscular activity such as eye movement, facial muscle

activity, etc. Peng et al. (2011). Feature extraction is one of the crucial steps due to its impact

on the performance of classification algorithms Khalid et al. (2014). Some of the obtained

features are in the domains of time and frequency Khalid et al. (2014), i.e., mean, median,

variance, maximum, and minimum, among others Saeidi et al. (2021); Stancin et al. (2021).

The feature extraction process produces a vector containing the most relevant features of

the EEG signals, used as input for classification algorithms. The next step is classification,

which is carried out by different algorithms, including LDA, SVM Subasi and Ismail Gursoy

(2010), KNN Yazdani et al. (2009), D.T. Edla et al. (2018), N.B., and ANN Saragih et al.

(2020).

Currently, there are different fields of science, engineering, and research that evaluate and

make use of BCIs to develop applications that present solutions to complex problems Han

et al. (2018) Casey et al. (2021). These have been possible due to advances in high-density

electronics, data acquisition systems that allow high-quality EEG signals to be acquired, in-

telligent systems that use machine and deep learning algorithms, and neural networks that

allow pattern recognition and signal classification to be performed with high precision. In

Brunner et al. (2015), the authors explain that BCIs can be used in the following six ap-

plication scenarios: replace, restore, augment, enhance, supplement, and research tools. The

authors of van Erp et al. (2012) commented that current and future BCI application areas

are: device control, user status monitoring, assessment, training and education, gaming and

entertainment, cognitive enhancement, safety, and security. Intelligent systems commonly in-

corporate machine learning (ML) approaches Navarro-Espinoza et al. (2022); Cerrada et al.
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(2022); Enŕıquez Zárate et al. (2022). ML refers to a system able to learn from training data

from certain activities so that the analytical model generation process is automated, and

associated tasks can be completed or supplemented Janiesch et al. (2021b); Fong-Mata et al.

(2020). Deep learning (DL) is a paradigm within ML based on the use of artificial neural

networks (ANNs) Janiesch et al. (2021a). Commonly, ML algorithms focus on classifying

EEG signals related to the motor and imaginary movements of hands and feet to carry out

control actions, as presented in Cho et al. (2018); Roy et al. (2021); You et al. (2020); Faiz

and Al-Hamadani (2019). DL is useful in areas with vast and high-dimensional data, the-

refore deep neural networks outperform ML algorithms for most text, images, video, voice,

and audio processing techniques LeCun et al. (2015). Nevertheless, for low-dimensional data

input, especially with insufficient training data, ML algorithms may still achieve superior

results Zhang and Ling (2018), which are even better interpretable than deep neural network

results Rudin (2019). The authors of Alomari et al. (2013) used power, mean, and energy as

features to classify EEG signals related to the right and left hands through artificial neural

networks (ANNs) and support vector machine (SVM). In Pinheiro et al. (2018), the authors

used SVM to control the direction of a wheelchair by extracting the mean, energy, maxi-

mum value, minimum value, and dominant frequency characteristics of the EEG signals. In

Bousseta et al. (2018), the authors used the F ast Fourier Transform and Principal Compo-

nent Analysis as characteristics of the EEG signals to feed the SVM classifier to control a

robotic arm. The authors of Tang et al. (2016) reported the use of EEG signals to control

an exoskeleton and the use of SVM, LDA, and NN for their respective classification. Studies

such as the one presented in Kant et al. (2020) have used pre-trained neural network models

to classify EEG signals through time–frequency characteristics. Recent studies have focused

on the proper selection of EEG signal characteristics and its effect on the accuracy of ML

and DL algorithms, as presented in Stancin et al. (2021). ML and DL techniques are widely

accepted and help to develop specific tasks within different applications Kaur et al. (2023);

Theissler et al. (2022); Sabharwal and Miah (2022); Haque et al. (2022); Contreras-Luján

et al. (2022); Aboneh et al. (2022); Bi et al. (2013). Moreover, they are increasingly used to

obtain EEG data for pattern analysis, classification of group membership, and BCIs Saeidi

et al. (2021); Abbasi and Goldenholz (2019); Majidov and Whangbo (2019); Craik et al.

(2019); Padfield et al. (2019); Lawhern et al. (2018); Lotte et al. (2018). However, there are
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still open research problems, such as the real-time processing of EEG signal classification and

the optimization of ML algorithms for implementation on embedded systems or edge com-

puting devices. Hence, research on and development of reliable, efficient, and robust systems

for EEG signal classification, among others, should be pursued Abdulkader et al. (2015a);

Mridha et al. (2021). The complexity of human movements for the manipulation of tools is

very high and diverse, for an adult human brain that has automated different movements, it

does not represent a major effort, however, for ML it requires the management of precise in-

formation inputs that allow programming and execution of free movement. Previous studies,

offer multiple classes of motor imagery limb movements based on EEG spectral and time

domain descriptors Samuel et al. (2017a), in this sense, there continues to be a need in ma-

chine learning to increase the reliability and accuracy of EEG signals used for programming

human-like movements.

For the reasons stated above, the aim of this paper is to evaluate nine ML algorithms for

the classification of EEG signals. The purpose is to find which ML model presents the best

performance metrics for the identification of movement patterns in EEG signals for the control

of a mechatronic system, in this case, a robotic hand prosthesis. The selected dataset consists

of more than 1500 EEG recordings of 1–2 min in length from 109 subjects and is publicly

available in Goldberger et al. (2000). In this study, we randomly selected 30 subjects to train,

validate, and test the proposed method. The ultimate aim is to facilitate the development of

robotic limb prosthetics, which is possible because ML algorithms can recognize patterns in

EEG signals with complex dynamics. The hypothesis is that ML algorithms perform better

in tasks of signal classification than standard methods. The novelty of this study is to provide

a methodology for the classification of EEG signals by training several ML algorithms and

employing processing, analysis, and feature extraction techniques in the time domain of

various lapses of EEG signals related to motor tasks, which can be translated into commands

for the control of mechanisms or mechatronic systems such as wheelchairs, robotic prostheses,

and mobile robots.

Therefore, in this Ph.D thesis, a methodology is provided for extracting features from EEG

signals and training five ML models and four ANN. Both the extraction of characteristics and

the generated models of machine learning and artificial neural networks can be implemented

in portable, low-cost, and consumption systems that control mechanisms through EEG sig-
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nals. The novelty of this Ph.D thesis is developing a high-level graphic language application

that allows the generation of different personalized data sets. The extracted data represents

the EEG signals’ most significant or relevant characteristics in the time domain. Specifically,

the novelty lies in how the characteristics extracted from the EEG signals are positioned in

the data set. These data sets allow the training, verification, and testing of machine learning

algorithms and artificial neural networks. The experiments show that the proposed methodo-

logy provides good results for classifying EEG signals related to motor movements of the left

hand, right hand, hands, feet, and relaxation. The development of machine learning models

and artificial neural networks with classification percentages above 90 percent will allow the

use of these models in robotic applications such as the control of biomedical prostheses.

Problem statement

The recording of EEG signals is more than 80 years old, brain-computer interfaces were

introduced in 1970, and the classification of EEG signals captured by these interfaces began

in 1988. The scientific community’s interest in this research field began in late 1999 and

early 2000. Since then, different approaches have been used for classifying electroencepha-

lographic signals, where the primary approach used was the same as that used in pattern

recognition systems. Currently, we find various investigations on the development of electro-

encephalographic signal classification systems that are implemented through the development

of software in personal computers and that use machine learning algorithms and deep lear-

ning.

- The current methods for classifying EEG signals are complex, making their implementation

difficult in embedded systems for real-time applications.

- Different investigations use few test subjects to obtain the performance metrics of machine

learning algorithms for classifying EEG signals.
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Proposed solution

This research developed a high-level graphical language application to carry out the pre-

processing, processing, and extraction of features in the time domain in different frequency

bands of electroencephalographic signals. The set of features extracted from the electroen-

cephalographic signals is passed to different machine learning algorithms for their respective

classification. These algorithms were developed in the Matlab 2021 development environment.

One of the features of this version is that machine learning algorithms can be implemented

in embedded development platforms such as Raspberry Pi 4 or NVIDIA Jason Nano. The-

se platforms provide excellent reliability, portability, and multiple benefits compared to a

computer.

Research objectives

The main research objective is to develop a methodology for classifying electroencephalo-

graphic signals through the extraction of different characteristics of the signals using machine

learning algorithms and artificial neural networks.

Specific Research objectives

Develop software that allows the reading of the database that contains the files of the

electroencephalographic signals.

Implement algorithms that allow segments of the electroencephalographic signals to be

selected for their subsequent analysis.

Design and develop algorithms that allow the preprocessing and processing of brain

signals.

Develop algorithms that allow the extraction of characteristics from electroencephalo-

graphic signals.
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Design and develop strategies to carry out the training of machine learning algorithms

and artificial neural networks.

Analyzing the performance metrics of the artificial neural network and machine lear-

ning algorithms used to classify electroencephalographic signals.

Publish the research results in a high-impact JCR journal.
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Chapter I

1. The brain

The most sophisticated structure in a human is the brain; it is considered to be a cru-

cial part of the central nervous system and is situated inside the skull Savadkoohi et al.

(2020). It is composed of 100 billion neurons on average Lent et al. (2012), which generate

new interconnections between them when learning activities or new experiences are develo-

ped Mateos-Aparicio and Rodŕıguez-Moreno (2019).

Figure 1: Anatomy and areas of the brain. Modified from source: Sulek (2019)

The human brain’s main components include; the cerebrum, cerebellum, and brainstem.

The cerebrum is an essential part, it is separated into the left and right hemispheres, where

the right hemisphere is in charge of regulating the muscular activity of the left side of the

human body. In contrast, the left hemisphere governs the movement of the right side Carter

(2019). Four areas known as lobes separate each hemisphere: the frontal lobe, parietal lobe,

occipital lobe, and temporal lobe. Figure 1 shows the human brain’s anatomy and different
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functional areas. Table 1 presents the different lobes that make up the brain and the functions

associated with each of these regions.

Table 1: Lobes of the brain and functions associated.

Brain lobe Function

Occipital lobe Liable for processing and analyzing visual
information.

Temporal lobe The sound processing center includes
language and some forms of memory.

Parietal lobe Home of the somatosensory cortex, an area
of the brain responsible for processing
sensations and touch information and
diverse factors of spatial processing.

Frontal lobe The most significant and most complex
part of the brain lobes is responsible for
executive functions, reasoning, decision

making, sensory integration, planning, and
movement execution.

The cerebellum is comparable in structure to the cerebrum. It has two hemispheres, and it

is sometimes called the little brain. The cerebellum receives visual, auditory, ventricular, and

somatosensory information. It also receives information about individual muscle movements

directed by the brain. Therefore, its primary function is to coordinate the actions of the body

integrating the control of the muscles, including balance, posture, and equilibrium Carlson

(2005).

1.1. Brain signals

Communication between neurons within the brain is through the sending of electroche-

mical signals from one cell to another. The electrical signal from an individual neuron is too

small to be detected by an electrode placed on the brain’s surface. However, when hundreds

of neurons activate, each small electrical current’s contribution causes a strong signal detec-

ted by an electronic sensor, such as an electroencephalogram. If a set of neurons is activated

synchronously, the sum of the activity can result in a perceptible signal on the scalp. In

contrast, if the neurons within the group fire asynchronously, the sum of the action results

in a small and intermittent signal.Table 2 compares the frequency bands, properties, and

cognitive activities related to each brain signal.
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Table 2: Bands of frequency related to brain activity and associated cognitive task.

Type Frequency range (Hz) Mental Activity

Delta 1-4 Liable for processing and
analyzing visual

information.
Theta 4-8 The sound processing center

includes language and some
forms of memory.

Alpha 8-12 Home of the somatosensory
cortex, an area of the brain
responsible for processing

sensations and touch
information and diverse

factors of spatial processing.
Beta 12-30 The most significant and

most complex part of the
brain lobes is responsible
for executive functions,

reasoning, decision making,
sensory integration,

planning, and movement
execution.

Investigators categorize these brain signals into distinguishing frequency ranges or fre-

quency bands: Delta (1 – 4 Hz), Theta (4 – 8 Hz), Alpha (8 – 12 Hz), Beta (12 – 25 Hz), and

Gamma (30Hz) Ramzan and Dawn (2019). Each wave type correlates with various mental

states, internal factors, and external conditions Niedermeyer and da Silva (2005). The Delta

brain wave is the slowest and the one with the most significant amplitude, and its frequency

range is between 1 – 4 Hz. Delta signals are only present in deep sleep and alert states.

The typical studies related to these waves are for diagnosing sleep disorders and indicators

of diseases such as alcoholism. Theta waves oscillate in a range between 4 – 8 Hz Kahana

et al. (1999). They are present in states of inspiration, deep meditation, moments of leisure,

and creativity. It correlates with complex mental operations, such as attention, information

taking, processing, and learning. The 8 - 12 Hz oscillations are defined as the Alpha rhythm.

This wave is associated with relaxation, concentration, and sometimes attention. Typical

studies on the Alpha wave are meditation, biofeedback training, and attention. The Beta

band oscillates between 12 – 25 Hz. It becomes stronger when we plan or execute movements

Sleight et al. (2009). It is also related to alertness, thinking, and active concentration. Studies
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of activity and alert induction use this wave as a reference. The somatosensory cortex exhi-

bits the Gamma band. It can be shown in the ability to identify noises, objects, and tactile

experiences. The Figure 2, shows the differences between five types of brainwaves.

Delta

Theta

Alpha

Beta

Gamma

Figure 2: Brain wave sample of different band of frequencies. Modified from source Abhang
et al. (2016)

1.2. Neuroimaging methods

Researchers have developed and used different neuroimaging techniques to measure and

register the brain’s electrical activity and blood flow resulting from thoughts or physical mo-

vements. Among the most common methods are: Magnetoencephalography (MEG), Electro-

corticography (ECoG), Magnetic Resonance Imaging (MRI), Functional near-infrared spec-

troscopy (fNRI), Positron emission tomography (PET), Single photon emission computed

tomography (SPECT), electroencephalography (EEG). Table 3 summarizes the benefits and

weaknesses of each method, and Table 4 offers us a comparison between these methods.
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Table 3: Neuroimaging methods advantages and disadvantages.
Neuroimaging Method Advantages Disadvantages

Magnetoencephalography (MEG)

Excellent temporal resolution and
better spatial resolution than EEG.

Helps in the focus identification in
some brain diseases.

Equipment very expensive .

Detects magnetic field in parallel.

Electrocorticography (ECoG)

Direct measurements.

Better precision and sensitivity than
EEG.

It required surgery.

The signal might be affected by
anesthetics.

Magnetic Resonance Imaging (MRI)

It does not involve radiation expo-
sure.

Valid for the scanning and detecting
of irregularities in soft tissue struc-
tures, including the brain.

High installation, operation, and
maintenance costs.

Scanning is done indoors and gene-
rates quite a bit of noise.

Functional near-infrared spectroscopy (fNRI)

Good spatial and temporal resolu-
tion.

Relatively inexpensive compared
with PET.

Temporal resolution poor compared
to other methods.

The information is limited by the
temporal dynamics.

Positron emission tomography (PET ) and
single photon emission computed

tomography (SPECT)
Most of the brain activities can be
detected, for an efficient diagnosing.

Good spatial and temporal resolu-
tion.

No brain image can be retrieved.

Not provided location of the diseases
or injures.

Electroencephalography (EEG)

Inexpensive.

Efficient in diagnosing some brain
diseases.

Does nos provide an image for deter-
mination of brain injuries.

Table 4: Neuroimaging methods differences.

Method Invasiveness Signal Temporal Spacial Portability

EEG No Electronic Medium Low Yes
ECoG Yes Electronic High High Yes
MEG No Magnetic Medium Medium No
PET No Metabolic High High No

SPECT No Metabolic High High No
MRI No Metabolic High High No
fMRI No Metabolic High High No
fNRI No Metabolic Medium Medium Yes

1.2.1. Magnetoencephalography (MEG)

It is a technique that measures the magnetic fields produced by electrical currents that

occur naturally in the brain Sosa et al. (2011). Through the use of this technique, it is possible
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to measure even small magnetoencephalographic signals through the use of superconducting

quantum interference (SQUIR) devices . This technique requires a particular setting in la-

boratories because other magnetic fields can interfere with MEG signals, such as the earth’s

magnetic field He et al. (2013). Figure 3 shows a MEG machine used for brain imaging.

The signals are less distorted by the cranial layer compared to magnetic fields; however, this

advantage does not present a considerable improvement in performance and training time

compared to other techniques Abdulkader et al. (2015a).

Figure 3: MEG device used for captures brain signals. From source: Proudfoot et al. (2014)

1.2.2. Electrocorticography (ECoG)

A technique that allows measuring the brain’s electrical activity through the implantation

of meshes or strips of electrodes on the cerebral cortex. The spatial resolution of the signal

is better than other techniques, and the signal-to-noise ratio it presents is superior due to its

proximity to the origin of neuronal activity Tiwari et al. (2018). This technique has various

drawbacks, among which the area of the brain where the position of the electrodes is exposed

makes it impossible to use this technique outside the operating room ref. Figure 4 presents

the grid of sensor used in ECoG .
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Figure 4: Grid of sensor used in the neuroimage method of ECoG. Modified from source:
Greiner et al. (2016)

1.2.3. Magnetic Resonance Imaging (MRI)

Neuroimaging procedure employs magnetic fields and radio waves to provide detailed

brain images. MRI helps find abnormalities in the brain and what causes them. This technique

can contrast both hemispheres of the brain to determine the anomalies are located on which

side. This neuroimaging technique provides better results than computed tomography due

to its high-contrast images Balafar et al. (2010). Figure 5 presents a MRI device to acquired

brain signals.

Figure 5: Magnetic resonance imaging scanner. Taken from source: Cohen Medical Centers
(2022)
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1.2.4. Functional Magnetic Resonance Imaging (fMRI)

This neuroimaging technique records changes in blood flow associated with neural activity.

The increased neuronal activity requires oxygen, which is transported through the blood. The

magnetic effects of oxygenated blood are distinct from those of deoxygenated blood. These

properties are measured by fMRI as a distribution of the magnetic field generated by the

protons Sitaram et al. (2008). The fMRI technique presents an excellent spatial resolution,

while the characteristics of temporal resolution are low. However, fMRI makes it possible to

capture information from deep brain parts that cannot be observed by measuring electric or

magnetic fields. Figure 6 shows a fMRI scanner from SIEMENS company.

Figure 6: Function magnetic resonance imaging scanner. Taken from source: Romanowski
et al. (2019)

1.2.5. Functional near-infrared spectroscopy (fNIRS)

fNIRS is a non-invasive neuroimaging method that measures blood dynamics in the brain

to detect neural activity. It uses near-infrared light to determine blood flow Bunce et al.

(2006). This technique projects infrared light into the brain to measure changes in diverse

wavelengths as the light is reflected. fNIRS usually detects shifts in blood volume and oxy-

genation. fNIRS is a less helpful method compared to MRI or fMRI. One of the outstanding

advantages of this technique is its portability, lower cost, and feasible alternative for medical

studies and practical applications Saikia et al. (2021). Figure 7 presents a fNRI system.
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Figure 7: Function near-infrared spectroscopy system. Modified from source: Saikia et al.
(2021)

1.2.6. Positron emission tomography (PET)

This technique monitors and detects any irregularity within the metabolic processes of

the different organs of the human body, including the brain. An injection of radionuclides

in patients is necessary to emit positrons interacting with electrons in the monitored area

Ramadan and Vasilakos (2017). The interaction generates gamma rays, which can be used

to construct an image. One of the significant disadvantages registered by different studies

of this neuroimaging technique is the operation and maintenance cost Pfurtscheller et al.

(2010). Figure 8 shows a PET scanner device.

Figure 8: PET scanner. Taken from source: Cannon Medical Systems (2022)
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1.2.7. Single Photon Emission Computed Tomography (SPECT)

SPECT is a nuclear tomography imaging neuroimaging technique that employs gamma

rays produced by radioactive isotopes . The introduction of isotopes into the human body

is by injection. SPECT devices produce two-dimensional images Roarke et al. (2008). This

technique utilizes a set of 2D images to create a three-dimensional image. SPECT has a spatial

resolution of about 1 cm and several seconds in terms of temporal resolutionCastermans et al.

(2013). Figure 9 shows a SPECT scanner from the company SIEMENS.

Figure 9: SPECT scanner. Taken from source: Siemens Healthineers (2022)

1.2.8. Electroencephalography EEG

EEG is recording electrical activity through the scalp through voltage fluctuations caused

by the activity of neurotransmitters within the brain. Electrodes are placed on a cap-type

device or directly on the scalp surface, as shown in Figure 10.

Figure 10: The EEG method for measuring brain. Taken and modified from source: Worldsha-
pers Health (2022)
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This method has a unique usability advantage over different methods for recording neural

activity. It is an easy method to use, has excellent portability, and is economical. EEG recor-

dings provide high temporal resolution Biasiucci et al. (2019). This method’s main challenges

are the signal-to-noise ratio and spatial resolution. Several techniques were proposed to im-

prove the localization of the signals and their spatial resolution. Using up to 256 electrodes is

the most significant, along with creating various standards for electrode location, including

10-20, 10-10, and 10-5 Jurcak et al. (2007).

Figure 11: 10-20 system for EEG electrode placement. Taken and modified from source: Chai
et al. (2019)

The image in figure 11 shows the 10-20 positioning standard, where the adjacent distance

between the pair of electrodes must be between 10 or 20 of the skull diameter. Using passive

and active electrodes increases the signal-to-noise ratio. Passive electrodes require an external

amplifier to amplify the measured signals, while active electrodes have built-in amplifiers.

Whether using passive or active electrodes, what is sought is to reduce ambient noise, line

noise, and signal weakness due to cable movement. Using gel or saline solution to lower the

impedance of the electrode’s contact with the skin is another disadvantage of EEG. Dry

electrodes are currently the best solution for this issue Zander and Kothe (2011).

The EEG neuroimaging method is the preferred method for developing Brain–Computer

Interfaces (BCIs), both in the academic community and the private sector. Historically, BCI

has been clinically applied for understanding motor impairment, both in verbal communica-

tion Neuper et al. (2003), limb movement Bartur et al. (2019), as well as cognitive impairment

Sergeev et al. (2021), and offer a great advantage over electromyography pattern recognition
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Samuel et al. (2017b) due to the lack of neuromuscular signals under amputation conditions.

1.3. Brain Computer Interface

Brain-computer interfaces are complete systems that include hardware and software that

manipulate signals from the human brain to control computers and different communica-

tion devices Ramadan and Vasilakos (2017). However, we can find other definitions in the

literature; some of these are the following:

BCI technology is a powerful communication mechanism between users and systems. It

does not demand the intervention of any external device or muscles to send commands

and achieve interactions Abdulkader et al. (2015a).

A BCI employs the signals to establish a link between the person’s mental state and

a computer-based signal processing system, which analyzes the signals Aggarwal and

Chugh (2019).

BCI can improve collaboration between the brain and a device, which allows direct

electrical signals from neurons to external devices such as a computer or a robotic arm

Mudgal et al. (2020).

BCI, also known as Human Machine Interface, includes the recording and decoding

brain signals to control external devices Kant et al. (2020).

A BCI must possess the following qualities to qualify as such:

Take direct measurements of brain activity.

Deliver user feedback.

Work online.

Depend on the control intent (that is, users must select to perform a mental task to send

a message or command every time they want to use the BCI) Pfurtscheller et al. (2010).
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1.3.1. Stages BCI

BCI generally consists of three stages: signal acquisition, signal processing, and applica-

tion. Figure 12 shows the components of the BCI and their relations.

Brain-Computer Interface

Signal
Acquisition

Preprocessing Feature
Extraction Classification

Application
Interface

Signal Processing

Feedback

Wheelchair Neuroprosthesis

Figure 12: Components of BCI system. Modified from source: Aggarwal and Chugh (2019)

1.3.2. Signal acquisition

The brain signals acquired by electrodes are placed in different configurations on the

scalp or over the brain’s surface. The acquired signals should ideally be free of noise and

artifacts. The most commonly used method inside the BCI is EEG due to its lower cost, easy

implementation, lower cost, and temporal resolution.

1.3.3. Signal processing

This module is divided into different phases, among which are: preprocessing, feature

extraction, and classification.

Preprocessing: the assignment of this phase is to prepare the recorded signal for pro-

cessing by improving the signal-to-noise ratio. Part of the electrical signal acquired by
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the EEG electrodes is related to eye and head muscle movements. It does not include

knowledge related to the electrical signal from the brain. These signals that do not

provide information, but are part of the signal, are considered artifacts and should not

be processed but eliminated to obtain the relevant information from the EEG signal.

Carrying out an adequate preprocessing of the EEG signals is of great relevance to

obtaining high results in classification accuracy.

Feature extraction: After preprocessing the signals, the signals are analyzed by one or

more feature extraction algorithms. In this phase, the most relevant characteristics of

the signal in the time, frequency, and time-frequency domain are extracted. A wide va-

riety of feature extraction methods are used within BCI systems. These methods include

amplitude measurements, power bands, parameters or coefficients of some transform,

autoregressive models, wavelets, and spatial filters.

Classification: Once the relevant characteristics of the signals have been extracted, it is

necessary to classify these components of brain patterns. Classification algorithms may

be able to use linear and non-linear methods.

1.4. BCI Scenarios

The applications of BCIs can be pretty broad, as well as the different areas they can

impact. Nevertheless, experts in this area propose six possible application scenarios. These

scenarios are in the Figure 13, and listed below:

1. Replace the loss of any body member due to illness or accident is a field application

of the BCI. Some examples include speech synthesis systems, assisted environments, and

wheelchair control.

2. Restoring the loss of motor functions, such as the movement of arms and hands, allows

the control of robotic neuroprostheses.

3. Enhance the body response is another possible application scenario for BCIs. Among

the possible application examples, we find increasing the immersion experience in video games

and education when performing specific tasks such as driving, reading, or writing.

4. Supplementing the human body with other robotic arms or being able to carry out

remote control of mobile robots will allow more complex tasks to be carried out.
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5. Improve the human body’s response to processes such as rehabilitation by providing

feedback to the patient on their progress.

6. Research tool is a scenario that will allow investigating the functions of the central

nervous system to know the brain functions in clinical and non-clinical studies.

Replace Improve Restore

Enhance Suplement Research Tool

Figure 13: Brain computer interface possible application scenarios. Modified from source:
Brunner et al. (2015)

1.5. State of the Art of BCI Applications

The type of applications that our work seeks to develop, once a robust methodology for

processing and classifying EEG signals has been generated and developed, is the control of

electromechanical devices or control systems with different degrees of freedom. The typical

application of the BCI is the selection of objectives, letters, or icons on a computer screen,

which has allowed the development of applications such as speech and writing assistants, as

well as intelligent environments. Table 5 presents some of the different applications where we

intend to apply the results obtained from our work in the medium term.
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Table 5: BCI robotics and control applications.

Publication Application Output
Commands

Used Electrodes

Hortal et al. (2015) Industrial robot Right Hand, Left
Hand, Countdown
and Alphabet back

Fz, FC5, FC1, FCz,
FC2, FC6, C3, Cz,

C4, CP5, CP1, CP2,
CP6, P3, Pz, P4.

Lee et al. (2017) Exoskeleton Turn left, walk
front, and turn right

FC3, FC1, FCz,
FC2, FC4, C3, C1,
Cz, C2, C4, CP3,

CP1 CPz, CP2 and
CP4

Bousseta et al.
(2018)

Custom robotic arm Right, left, up and
down

AF3, AF4, F3 and
F4

Liu et al. (2019) Dual robotic arm Lift and drop C3 and C4
Xu et al. (2020) Custom robotic arm Left hand, right

hand, both hand
and relaxation

C3, FC3, CP3, C5,
C4, FC4, CP4, and

C6
Herath and de Mel

(2021)
Robot hand Resting, idle,

flexion, hold flexion
and extension

FC3, FC4, C1, C2,
C3, C4, Cz, and

CPz
Dumitrescu et al.

(2021)
Virtual drone Right and left CP3, CP4, P3, C3,

Pz, C4, P4 and Cz
Arshad et al. (2022) Custom robotic arm Left arm, right arm,

and no movement
AF3, F7, F3, FC5,

T7, P7, O1, O2, P8,
T8, FC6, F4, F8,

and AF4
Chen et al. (2022) Electric wheelchair Backward, forward,

left and right and
end orientation

O1, O2 and Pz

Quiles et al. (2022) Industrial robot Up, center, right
and left

O1, O2, Oz, PO3,
PO4, Pz, Cz, and Fz
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Chapter II

2. Classification Methods

After the pertinent EEG signal parameters have been retrieved, it is necessary to perform

signal processing to translate them into control commands or some instructions. Classifica-

tion algorithms are used to do this task, which have proven efficient, effective, and accurate in

developing brain-computer interface systems. It is worth mentioning that these signal para-

meters represent some motor or imaginary action of movement by the person. Classification

is a process of predicting different classes from a given input. The classification process is ca-

rried out through a classification model. For the construction of the model, it is necessary to

train it by employing a learning algorithm to adjust the parameters of the model. The same

model is used in the training, validation, and testing stages to obtain a particular output and

performance metrics. Figure 14 shows the process for training the ML and DL algorithms.

Data Selection

Model 
Building and 

Training

Model testingModel 
Validation

Data 
Preprocesing

Data 
Tranformation

Raw 
Data

Final 
Model

Data preparation phase

Evaluation phase

Learning phase

Feature
Vector

Predictive
Model

Figure 14: Construction process of a classification model. Modified from source: Pramanik
et al. (2021)

Different classification methods have been explored within brain-computer interface sys-
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tems. Figure 15 shows the main categories of classification algorithms.

Classifiers

Non-Linear 
Bayesian

● Bayes 
Quadratic

● Hidden 
Markov

Neural
● Multilayer 

Perceptron
● Fuzzy Logic
● Adaptive 

Logic 
Network

Nearest 
Neighbor

● K-Nearest 
Neighbor

● Mahalanobis 
Distance

Linear
● Linear 

Discriminant 
Analysis 
(LDA) 

● Support 
Vector 
Machine 
(SVM)

Non-Linear 
Bayesian

● Voting
● Boosting
● Stacking

Figure 15: Categories of most common algorithms for classification task.

For the development of the methodology presented in this work, the five machine learning

algorithms and four artificial neural networks listed below were used, which will be discussed

in more detail in the next sections.

Linear discriminant analysis (LDA).

Decision trees (DT).

K-neasted neighbors (kNN).

Naive Bayes (NB).

Support vector machines (SVM).

Narrow Artificial neural network (Narrow-ANN).

Medium Artificial neural network (Medium-ANN).

Wide Artificial neural network (Wide-ANN).

Bilayered Artificial neural networks (Bilayered-ANN).
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2.1. Machine Learning Algorithms

2.1.1. Linear discriminant analysis

Linear discriminant analysis is the most widely used classifier in classifying EEG data and

signals, where the Fisher distance is used to discriminate the data Duda et al. (2012); Kirby

(2001). The LDA algorithm aims to project the original data array into a lower dimensional

space. Three steps are needed to archive this. First step is to obtain the separability between

the different classes. The second is to calculate the distance between the mean and the

samples of each class. The third is to construct the space of least dimension to maximize the

variance between classes and minimize the variance within the class. The Figure 16 shows

the steps to calculate a lower dimensional subspace with the LDA technique Tharwat et al.

(2017).

Figure 16: Steps of the LDA technique. Taken from source:Tharwat et al. (2017)
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The next lines describe the different steps of the LDA algorithm.

A. Given a dataset of N samples [xi]
N
i=1, each sample represent a row of length M, and

X(NXM).

X =


x(1,1) x(1,2) · · · x(1,M)

x(2,1) x(2,2) · · · x(2,M)

...
...

. . .
...

x(N,1) x(N,2) · · · x(N,M)


B. Compute the mean of each class µi(1 ×M).

C. Compute the total mean of all data µ(1 ×M).

D. Calculate between-class matrix SB(M×M)

SB =
c∑

i=1

ni(µi − µ)(µi − µ)T (1)

E. Compute within-class SW (M×M)

SW =
c∑

j=1

nj∑
i=1

(xij − µj)(xij − µ)T (2)

F. The matrix that maximizing Fisher´s distance is calculated as follow, . The eigenvalues

and eigenvectors are then calculated W = S−
W1SB. The eigenvalues (λ) and eigenvectors

(V) of W are then calculated.

G. Sorting eigenvectors in descending order according to their corresponding eigenvalues.

The first k are used as a lower dimensional space, to project all original samples onto

the lower dimensional space of LDA.

29



2.1.2. Decision trees

An approach for supervised learning called a decision tree allows us to perform classifica-

tion and regression tasks. A decision tree follows the principle of iteratively partitioning data

by asking questions Li et al. (2022). The answers to the questions are crucial to creating the

decision tree. Two primary methods for determining a split question’s quality are entropy

Shannon (1948) and Gini impurity Gini (1921). With more query information, the prediction

model performs better. Gini impurity is mathematically formulated as

GI =
N∑
i=1

P(i)(1 − P(i)) (3)

where NC is the total number of classes and P(i) is the probability of the ith class in the cu-

rrent dataset. By weighing the impurities in each branch, the split quality can be determined

by

GIsplit =
N∑
i=1

wiGIi (4)

Decision
Node

Decision
Node

Decision
Node

Leaf Node
Leaf NodeLeaf NodeDecision

Node

Leaf NodeLeaf Node

Sub-Tree

Figure 17: General example of a Decision Tree. Modified from source: Datacamp (2022)
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2.1.3. K-Nearest Neighbor (KNN)

The KNN classifier is a component of unsupervised algorithms. The primary characte-

ristic of these classifiers is that the feature vector is given to the k neighborhood’s closest

distance class. Methods for calculating distances include Euclidian, Manhattan, Minkowski

and Hamming algorithms Walters-Williams and Li (2010). The Euclidean calculation that is

most frequently employed is defined by

δ =

√√√√ m∑
i=1

(x1,i − x2,1)2 (5)

where δ is the distance, x1 and x2 are two arbitrary data neighbors, and m is the input

dimension. After analyzing the neighboring classes, the KNN uses a majority vote to assign

the class based on query data. The Figure 18 shows the different step in the KNN algorithm.
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?

Step 1: Initial Data
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Class A

X-Axis
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A
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s
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Step 2: Calculate Distance

Class B

Class A
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Y-
A

xi
s

?

Step 3: Determine k-neiborgs

Class B

Class A

X-Axis

Y-
A

xi
s

K=3
Class A

Step 4: Voting for Labels

K=3

K=4

Figure 18: Steps of the KNN algorithm. Modified from source: Chakure (2021)

The main advantage of this algorithm is its simple and flexible Li et al. (2022). However,

its sensitivity is considered one of its primary weaknesses, affecting BCI systems’ performance

Abdulkader et al. (2015a).
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2.1.4. Naive Bayes

Statistical classifiers include Bayesian classifiers. They can forecast class probabilities

and the likelihood that a given sample will belong to a specific class. The Bayes theorem

provides the basis for the Bayesian classifier. The Naive Bayes classifier assumes that an

attribute’s impact on a particular class is unrelated to the values of the other characteristics.

Conditional class independence is the term used to describe this principle. This assumption

is called conditional class independence. It is viewed as naive since it is done to simplify the

computations required.

Take X = {x1, x2, · · · , x3} as an sample, whose elements represent judgments made in

relation to a set of n attributes. X is regarded as evidence in the Bayesian sense. Let H stand

for some hypothesis, saying that the data X is a part of a particular class. When dealing

with classification issues, we aim to figure out P(H | X), or the probability that hypothesis

H is true, given the evidence from the observed data sample X. In other words, given that

we are aware of the attribute description of sample X, we are attempting to determine the

likelihood that sample X belongs to class C. P(H | X) is the posteriori probability of H

conditioned on X, it is based on more information. P(H) is the a priori probability of H,

which is independent of X. The Bayes theorem Berrar (2018), express that the probability of

P(H | X) can be expressed in term of probabilities P(H), P(X | H), and P(X) as

P(H | X) =
P(X | H)P(H)

P(X)
(6)

and the available information can be used to determine these probability. Here is how the

naive Bayes classifier operates Leung (2007):

1. Let T be a training set of samples, each with their class labels. There are k classes,

C1,C2, . . .Ck. Each sample is represented by an n-dimensional vector, X = {x1, x2, · · · , x3},

depicting n measured values of the n attributes, A1,A2, . . . ,An, respectively.

2. Given a sample X, the classifier will predict that X belongs to the class having the

highest a posteriori probability, conditioned on X. That is X is predicted to belong to

the class Ci if and only if

P(Ci | X) > P(Cj | X) for1 ≤ j ≤ m, j ̸= i. (7)
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Thus we find the class that maximizes P(Ci | X). The class Ci for which P(Ci | X) is

called the maximum posteriori hypothesis. By Bayes theorem

P(Ci | X) =
P(X | Ci)P(Ci)

P(X)
(8)

3. As P(X) is the same for all classes, only P(X | Ci)P(Ci) need be maximized. If the

class a priori probabilities, P(Ci), are not known, then it is commonly assumed that

the classes are equally likely, that is, P(C1) = P(C2) = . . .P(Ck) =, and we would

therefore maximize P(X | Ci). Otherwise we maximize P(X | Ci)P(Ci). Note that the

class a priori probabilities may be estimated by P(C)i = freq(Ci,T)/ | T |.

4. Given dataset with many attributes, it would be computationally expensive to com-

pute Compute within-class P(X | Ci). In order to reduce computation in evaluating

P(X | Ci)P(Ci), the naive assumption of class conditional independence is made. This

presumes that the values of the attributes are conditionally independent of one another,

given the class label of the sample. Mathematically this means that

P(X | Ci) ≈
n∏

k=1

P(xk | Ci) (9)

The probabilities P(x1 | Ci),P(x1 | Ci), . . . ,P(xn | Ci), can be easily be estimated fro

the training set. Recall that here xk refers to the value of attribute Ak for sample X.

(a) If Ak is categorical, then P(x1 | Ci) is the number of samples of the class Ci in T

having the values xk for attribute Ak divided by freq(Ci,T) the number of class

Ci in T.

(b) If Ak is a continuous-valued, then we typically assume that the values have a

Gaussian distribution with mean µ and standard deviation σ defined by

g(x, µ, σ) =
1√
2πµ

exp− (x− µ)2
2σ2

(10)

so that

p(xk | Ci) = g(xk, µCi, σCi) (11)
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We need to compute µCi and σCi, which are the mean and standard deviation of

values of attribute Ak for training samples of class Ci.

5. In order to predict the class label of X, P(X | Ci)P(Ci) is evaluated for each class Ci.

The classifier predicts that the class label X of is Ci if only it is the class that maximizes

P(X | Ci)P(Ci).

According to comparative studies of classification methods, the Naive Bayes classifier is

comparable in performance to decision tree classifiers and artificial neural networks. Bayesian

classifiers have also demonstrated great accuracy and speed when used on large databases

Daniela et al. (2009).

2.1.5. Support vector machines

Support vector machines are supervised algorithms employed in classification and regres-

sion tasks in applications related to medical signal processing, natural language processing,

image recognition, and EEG signal classification applications. The classification and regres-

sion tasks are completed by building hyperplanes within the model’s response space Hearst

et al. (1998). The model aims to find a hyperplane that, to the best possible degree, separates

one class’s data points from another. The best hyperplane is defined as the most extended

margin between two classes, as shown in Figure 19.
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Figure 19: Classification by support vector machine. Modified from source: Ippolito (2021)

Vector supports refer to a subset of training observations identifying the positions of the

separating hyperplane. The standard brackets machine algorithm is formulated for binary

classification problems, reducing multiclass issues to a series of binary problems.
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The support vector machine is called a support vector classifier for classification problems

Cervantes et al. (2020). Given n training data X ∈ ℜ and corresponding two class categories

Y ∈ [−1, 1], the goal is determine the parameter w ∈ ℜm and b ∈ ℜ and predict the correct

sign of wTϕ(x) + b for the most samples. Therefore, the SVC primal problem is:

minu,b,ζ
1

2
wTw + C

n∑
i=1

ζi, (12)

subject to

yi(w
Tϕ(xi) + b) ≥ 1 − ζi, (13)

ζi ≥ 0, i = 1, . . . , n. (14)

In this formulation, the penalty C
∑n

i=1 ζi and wTw are minimized in order to maximize

the margin. In more detail, the constant C determines the strength of the penalty and the

positive-value ζi adds a penalty to the objective function above if the ith sample is inside

the bounds of the hyperplane or is misclassified. The SVC primal problem is made easier by

the Lagrangian duality principle as

minα
1

2
αTQα− eTα (15)

subject to

yTα = 0, (16)

0 ≤ αi ≤ C, i =, . . . , n, (17)

where e is the vector of all ones, Q is an n by n positive semi-definite matrix, Qi,j =

yiyjK(xi, xj),K(xi, xj) = ϕ(xTi )ϕ(xj), is the kernel, and ϕ is a dual coefficient vector upper-

bounded by C. The dual problem is a quadratic function subject to linear constrains, which

quadratic programming algorithms can solve efficiently Rong et al. (2022). Once we construct

the SVC by solving the above optimization problem, the predicted classification on a given

sample x′ becomes:
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y′ =
∑
i∈SV

yiαiK(xi, x
′) + b (18)

where SV is the support vector set. We only need to sum over the support vectors because

the dual coefficients α are zero from the other training data.

2.2. Artificial neural network

Artificial neural networks are popular machine learning methods that mimic the workings

of learning beings. Neurons are a type of cell found in the human nervous system. Axons

and dendrites connect neurons, and the areas where these two structures meet are known as

synapses. Figure 20 shows an illustration of these linkages presented in a biological neural

network.

Soma

Nucleus

Axon

Myelin sheath

Dendrite

Axon terminal

Inputs

Outputs

Figure 20: Biological neural network.

Learning occurs similarly in living organisms. Artificial neural networks, which include

processing units referred to as neurons, imitate the biological mechanism. Weights are used

to connect computing units, serving a similar purpose as synaptic connection strengths in

biological organisms. As shown in Figure 22, each input to a neuron is scaled with a weight,

which has an impact on the function computed at that unit. By transmitting computed va-

lues from the input neurons to the output neurons and utilizing the weights as intermediate

parameters, an artificial neural network computes a function of the inputs. The weights hol-

ding the neurons together are modified during learning. Similar to how biological organisms

require external stimuli for learning, artificial neural networks also require external stimu-

li. The training data, which contains examples of input-output pairings for the function to

36



be trained, serves as the external stimulus in these networks. The purpose of adjusting the

weights is to alter the computed function such that predictions made in subsequent iterations

are more accurate. In order to lower the calculation error on that example, the weights are

changed carefully in a way that is supported by mathematics.

Even though the initial artificial neural network mathematical model was put forth in

1943, it was not until the 1960s and 1980s that the study and scope of what is now called

artificial neural networks spread Michie et al. (1994). Figure 21 shows us the model of an

artificial neural network.
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Figure 21: Artificial Neural Network.

We can interpret the above graphic as a function of the form:

f(w0 + w1x1 + w2x2 + · · · + wmxm) = y (19)

Therefore, the generic definition of an artificial neuron is given as a simple calculation

device, which from an input vector coming from the outside or other neurons, provides

a single output response Aggarwal (2018). The Figure 22 shows the generic model of an

artificial neural network.
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Figure 22: Artificial neural network, generic model.

The matrix product, often known as the inner product of two vectors, represents the

propagation rule.

t = −→w T
j wj =

m∑
j=0

wjxj =
m∑
j=1

wjxj + w0 (20)

The step function is assumed to be the activation function in its most basic form. We can

say that with the step function, the activation threshold is 0.

y = f(t)

+1, if t > 0

0, if t ≤ 0

(21)

2.2.1. Activation function

The artificial neuron processes the information distributed throughout the network using

the activation function. Numerous activation functions exist Ding et al. (2018); Apicella et al.

(2021), some of which are shown in Figure 23.
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Step Function Linear Function

Sigmoid Function Gaussian Function

Figure 23: Examples of activation function used inside the artificial neural network.

2.2.2. Network topology

Despite the fact that there are many different types of architecture today. We can point

to the shared following three fundamental qualities:

1. The number of layers in the network: input layer, output layer, and hidden layers.

2. The way information propagates within the network: feed-forward, feedback and back-

propagation.

3. The number of nodes or neurons in each layer.

The Figure 24 shows the generic topology of an artificial neural network. The number

of neurons in the input layer is determined by the same number of variables considered

in the input data plus the threshold neuron. The number of neurons in the output layer is

determined by the prediction variable of the problem, whether it is regression or classification.

Although there are a few guidelines, there is no universal rule for calculating the optimal

number of neurons to place in the hidden layers Fekiač et al. (2011). A theorem regarding

the scope of artificial neural networks tells us that a forward-propagating neural network,

with a single hidden layer and enough neurons in that layer, is sufficient to solve almost any

machine-learning problem in real life.
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Figure 24: General topology of artificial neural network.

2.3. Classification methods used in robotics

In BCI research, neural networks (NN) and linear classifiers are the two types of classifiers

that are most frequently utilized. In Bi et al. (2013), different tables indicate the classifiers

used to classify the EEG signals, as well as with commands generated to control the related

application. It can be seen that the use of linear classifiers, LDA, SVM, and ANN, are the

main classifiers used. The precision mentioned in the different works ranges between 60 and

90 accuracy. Zhang and Wang (2021) presents similar tables showing the classifier used, the

control object, and the output commands. This work shows that linear classifiers are the

most widely used together with artificial neural networks. The accuracy of the different re-

sults presented is 10 and 95; it is because some applications include exoskeletons where the

accuracy is drastically affected. In Aggarwal and Chugh (2019) work, different linear classi-

fiers, artificial neural networks, and deep neural networks for the classification of EEG signals

are mentioned in different databases related to validating signal processing and classification

methods for BCIs. Table 6 presents various robotic application works and the classifier used.
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Table 6: Classifier used in robotics and control applications.

Publication Application Classification

Hortal et al. (2015) Industrial robot SVM
Lee et al. (2017) Exoskeleton D.T.

Bousseta et al. (2018) Custom robotic arm SVM
Liu et al. (2019) Dual robotic arm SVM
Xu et al. (2020) Custom robotic arm ANN

Herath and de Mel (2021) Robot hand SVM
Dumitrescu et al. (2021) Virtual drone ANN

Arshad et al. (2022) Custom robotic arm KNN, D.T
Chen et al. (2022) Electric wheelchair SVM
Quiles et al. (2022) Industrial robot LDA
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Chapter III

3. Metodology

A typical system for EEG signal classification is conceptually divided into signal acqui-

sition, preprocessing, feature extraction, and classification Hosseini et al. (2021); Aggarwal

and Chugh (2019). The EEG signals are acquired by electrodes located on the scalp’s surface

that transfer information on the electrical neuronal activity to the data acquisition system. In

preprocessing, line noise and muscle artifacts are removed from EEG signals. Feature extrac-

tion uses several digital signal processing techniques to obtain feature vectors. These vectors

are used to train the ML or DL algorithms to classify the EEG signals. The result of the

algorithms is a specific class, as illustrated in Figure 25. The following subsections describe

the procedure in detail.

Raw EEG Signals
Dataset EEG Motor 
Movement/Imagery 

(Physionet)

Feature Vector 
Feature extraction using

tone, amplitude statistical 
measurement in diferent 

bands of frequency

Classification
Classification using LDA,

KNN, Desicion Tress, 
Naive Bayes and SVM 

algorithms

Output
Identification of Motor 
Movements as left fist, 
rigth fist, fist, feet and

relaxing

Figure 25: Proposed method for classifying EEG signals.

3.1. Hardware and Software

The hardware used for the implementation of the proposed method had the following

specifications: Microsoft Windows 10 Pro operating system, System Model OptiPlex 3070,

System type x64-based PC, Processor Intel Core i5-9500 at 3.00 GHz, 6 Cores, 6 Logical

Processors, Memory (RAM) of 16.0 GB DDR4 2666 MHz (2 X 8 GB), and NVIDIA GeForce

GT 1030 GDDR5 2 GB PCI-Express x16. The software used for reading the EEG signals,

electrode selection, signal segmentation, preprocessing, analysis, feature extraction, and pre-
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paration of the dataset was LabVIEW 2015. Furthermore, the following libraries, which are

part of the development environment of LabVIEW, were used: Biomedical Toolkit and Sig-

nal Express. The MATLAB 2021a version was used for training and testing the different ML

algorithms, which are part of the Statistics, Machine Learning and Deep Learning Toolbox.

3.2. Input data

The dataset used for EEG signal classification was developed by Schalk and colleagues

at Nervous System Disorders Laboratory and is publicly available on Physionet Goldberger

et al. (2000). The data consist of more than 1500 EEG recordings of 1–2 min in length from

109 subjects. Patients performed 14 tasks (experiments) while 64 electrodes acquired and

recorded the EEG signals through the BCI2000 system G. Schalk et al. (2004). The data are

in EDF+ format Kemp and Olivan (2003), and they contain 64 EEG signals, each displayed

at a rate of 160 samples per second, and an annotation channel, which refers to the actions

performed during the task. Table 7 shows the protocol of the Schalk agreement experiment.

The diagram of the position of the electrodes used to record the data is the standard 10-10

placement. The dataset consists of 109 folders, and each folder contains 28 files, where 14

of these have the *.edf extension, and the other 14 have the *.edf.event extension. The files

that contain the EEG signals are those that contain the *.edf extension. The *.edf.event

files refer to the events during the development of the different tasks. Although the original

set of recorded data consists of continuous multichannel data, and the number of users that

comprise it is extensive, we only used the EEG signals of 30 randomly selected subjects and

the tasks that are related to the real movements that take place in tasks 3, 5, 7, 9, 11, and

13. In tasks 3, 7, and 11, real movements related to the right and left fists and relaxation

are carried out, while in tasks 5, 9, and 13, real movements of both fists and both feet are

carried out. Table 7 summarizes the dataset used in the proposed approach.
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Table 7: Tasks presented in the dataset to train the ML algorithms for EEG signal classifi-
cation.

Task Real Mo-
vement

Imaginary
Move-
ment

To T1 T2 Duration

1 Open Eyes - Relaxing - - 1 min
2 Close Eyes - Relaxing - - 1 min
3 Fist - Relaxing Left Right 2 min
4 - Fist Relaxing Left Right 2 min
5 Fist/Feet - Relaxing Fist Feet 2 min
6 - Fist/Feet Relaxing Fist Feet 2 min
7 Fist - Relaxing Left Right 2 min
8 - Fist Relaxing Left Right 2 min
9 Fist/Feet - Relaxing Fist Feet 2 min
10 - Fist/Feet Relaxing Fist Feet 2 min
11 Fist - Relaxing Left Right 2 min
12 - Fist Relaxing Left Right 2 min
13 Fist/Feet - Relaxing Fist Feet 2 min
14 - Fist/Feet Relaxing Fist Feet 2 min

3.3. Proposed Method for EEG Signal Processing

Figure 26 depicts the proposed method for EEG signal processing, described in detail in

the following subsections.

Figure 26: Proposed method for EEG signal classification.
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3.3.1. EEG Signal Acquisition and Channel Selection

The LabVIEW software 2015 version was employed as the development platform, while

the Biomedical Toolkit was used to import the EEG signals, due to the signals being in

EDF format. The selected electrodes are shown in Figure 27(b). These electrodes present

neuronal activity correlated to the execution of the left- and right-hand movements (contained

in electrodes C3, C4, and CZ Neuper and Pfurtscheller (2001); Deecke et al. (1982)) the

neuronal activity related to the movement of both feet (contained in electrodes C1 and

C2 Hashimoto and Ushiba (2013)); because the different EEG channels tend to represent

redundant information, as mentioned in Sleight et al. (2009), electrodes C3, C1, CZ, C2, and

C4 were selected in our study. The selected electrodes were located around the center of the

skull, within the motor cortex area; their characteristic is that these electrodes are the least

affected by different artifacts Lee et al. (2017), which allows the reliable extraction of features

to be obtained.

Biomedical 

Íf � Search � Customize 

► ► 

Biomedical F ... ► 

�

► 

► ► 

► ► 

► ► 

► ► 

► ► 

Biosignal Me... Medical lma ... Read Biosignal 

            (a)             (b)

Figure 27: Selected electrodes for EEG signal classification. (a) Biomedical toolkit and (b)
electrodes selected.

3.3.2. Pre-processing

The EEG signals used, with a sampled frequency of 160 samples per second, are available

online Goldberger et al. (2000). Bandpass filters were required to select only the frequencies

of interest and eliminate line noise and some other interferences. For this study, we processed

the EEG signals through an IIR bandpass filter, with third-order Butterworth topology from
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0.1 to 50 Hz. After this, a 50 Hz Notch filter was applied to the signals to eliminate noise

from the signal power line. Figure 28 shows the original readings of the electrodes used before

and after applying the different filters related to the signal pre-processing operations.

Figure 28: EEG signals acquired from electrodes C3, C1, CZ, C2, and C4. (a) Original EEG
signal and (b) filtered EEG signal.

3.3.3. EEG Band Separation

Within EEG signal analysis, it is common to separate a signal into different frequency

bands, including Delta (1-4 Hz), Theta (4-8 Hz), Alpha (8-12 Hz), Beta ( 12-30 Hz), and

Gamma (30-50 Hz). As shown in Table 8, third-order bandpass Butterworth IIR filters with

different cut-off frequencies were used to carry out this separation.

Table 8: Cut-off frequencies of bandpass filters for band extraction of EEG signals.

Band of EEG Signal Low Cut-off Frequency High Cut-off frequency

Delta 0.0 Hz 4.0 Hz
Theta 4.0 Hz 8.0 Hz
Alpha 8.0 Hz 12.0 Hz
Beta 12.0 Hz 30.0 Hz

Gamma 30.0 Hz 50.0 Hz
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3.3.4. Feature Extraction

The features of the EEG rhythm can be obtained by using several digital signal processing

techniques. These features were used for training the nine ML algorithms. These analysis

techniques included measurements of tone, amplitude, and level, as well as statistical analyses.

Table 9 shows the type of measurements and features obtained when these techniques were

applied to the EGG signal epochs.

3.3.5. Signal Analysis

Tone measurements. The tone measurements carried out in the EEG signal epochs were

the following: amplitude, frequency, and phase.

Level measurements. The level measurements implemented in the EEG signal epochs

were the following: peak-to-peak, negative peak, and positive peak.

Statistical features. The statistical measurements applied to the different signal epochs

were the following:

• Median, is the value separating the higher half from the lower half in the set Naik

(2012)Stancin et al. (2021):

Median =


(N+1)

2
, when N is odd

N
2

+ (N+1)
2

, when N is ever
(22)

• Mode, is the number that occurs most frequently in the set;

• Mean, is the average of the set Zwillinger and Kokoska (1999):

x̃ =
1

N

N∑
i=1

xi (23)

• Root mean square (RMS), the arithmetic mean of the squares of a given set Zwi-

llinger and Kokoska (1999):

RMS =

√√√√ 1

N

N∑
i=1

x2
i (24)
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• Standard deviation, is a measure of how dispersed the set is in relation to the mean

Zwillinger and Kokoska (1999):

S =

√√√√ 1

N

N∑
i=1

(xi − x̃)2 (25)

• Summation, is the addition of the samples in the set:

N∑
i=1

xi (26)

• Variance, is a measure of variability of the set from the mean Zwillinger and

Kokoska (1999):

S2 =
1

N

N∑
i=1

(xi − x̃)2 (27)

where x̃ is the mean;

• Kurtosis, is a metric that assesses how heavy-tailed or light-tailed the data are in

comparison to a normal distribution Zwillinger and Kokoska (1999):

Kurtosis =
N∑
i=1

(xi − x̃)4

(N − 1)s4
(28)

• Skewness, is a measurement of the distortion of symmetrical distribution or asym-

metry in a data set Zwillinger and Kokoska (1999):

Skewness =
N∑
i=1

(xi − x̃)3

(N − 1)s3
(29)

3.3.6. Dataset Preparation

The data vectors consist of 15 features, 3 features for each electrode; the electrodes co-

rrespond to positions C3, C1, Cz, C2, and C4, which are related to motor movements, and

these belong to one of the five classes of Relaxation, Right hand, Left hand, and Fist and

Feet. The dataset has 2,792 samples, where 558 samples correspond to the relaxation class,

567 to the right hand, 555 to the left hand, 561 to both fists, and 547 to the feet. On average,

there are 557 samples per class, which preserves the balance among the classes. Figure 38 in
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Appendix A shows a fragment of the dataset created by processing EEG signals when diffe-

rent users performed different motor tasks. Figure 39 in Appendix B depicts the graphic user

interface (GUI) of the software (App) developed for the feature extraction process. The pro-

posed App allows features to be extracted in different frequency bands, where each frequency

band corresponds to a different class. Table 9 shows the features obtained for training the

different ML algorithms. Each line represents a vector of features consisting of 5 electrodes.

Three different measurements were made for each electrode, which resulted in a vector with

15 different characteristics used for the training and testing of the ML and DL models. It

can be observed that the feature vector is labeled with its respective class. For each of the

five classes, 15 different features were obtained in 5 different frequency bands to improve the

classification accuracy of the ML algorithms Jatupaiboon et al. (2013); Al-Ani and Al-Sukker

(2006).

Table 9: Features of the EEG signal used to train the ML algorithms.
Features of the channels for the different electrode positions

Band C3 C3 C3 C1 C1 C1 Cz Cz Cz C2 C2 C2 C4 C4 C4 Class

Delta A
m

p
li

tu
d

e

F
re

q
u

en
cy

P
h

as
e

P
ea

k
to

P
ea

k

N
eg

.P
ea

k

P
os

.P
ea

k

M
ed

ia
n

M
o
d

e

M
ea

n

R
M

S

S
.D

.

S
u

m
m

at
io

n

V
ar

ia
n

ce

K
u

rt
os

is

S
ke

w
n

es
s

R
el

ax
in

g
Theta A

m
p

li
tu

d
e

F
re

q
u

en
cy

P
h

as
e

P
ea

k
to

P
ea

k

N
eg

.P
ea

k

P
os

.P
ea

k

M
ed

ia
n

M
o
d

e

M
ea

n

R
M

S

S
.D

.

S
u

m
m

at
io

n

V
ar

ia
n

ce

K
u

rt
os

is

S
ke

w
n

es
s

L
ef

t
H

an
d

Alpha A
m

p
li

tu
d

e

F
re

q
u

en
cy

P
h

as
e

P
ea

k
to

P
ea

k

N
eg

.P
ea

k

P
os

.P
ea

k

M
ed

ia
n

M
o
d

e

M
ea

n

R
M

S

S
.D

.

S
u

m
m

at
io

n

V
ar

ia
n

ce

K
u

rt
os

is

S
ke

w
n

es
s

R
ig

h
t

H
an

d

Beta A
m

p
li

tu
d

e

F
re

q
u

en
cy

P
h

as
e

P
ea

k
to

P
ea

k

N
eg

.P
ea

k

P
os

.P
ea

k

M
ed

ia
n

M
o
d

e

M
ea

n

R
M

S

S
.D

.

S
u

m
m

at
io

n

V
ar

ia
n

ce

K
u

rt
os

is

S
ke

w
n

es
s

F
is

t

Gamma A
m

p
li

tu
d

e

F
re

q
u

en
cy

P
h

as
e

P
ea

k
to

P
ea

k

N
eg

.P
ea

k

P
os

.P
ea

k

M
ed

ia
n

M
o
d

e

M
ea

n

R
M

S

S
.D

.

S
u

m
m

at
io

n

V
ar

ia
n

ce

K
u

rt
os

is

S
ke

w
n

es
s

F
ee

t

49



3.3.7. Machine Learning Algorithm Training

In this paper, we selected nine ML algorithms to evaluate their performance in the clas-

sification of EEG signals related to the motor movements of right hand, left hand, both

fists, feet, and relaxation. The nine selected algorithms are: naive Bayes (N.B.), k-nearest

neighbors (KNN), decision tree (D.T.), support vector machine (SVM), linear discriminant

analysis (LDA), Narrow-ANN, Medium-ANN, Wide-ANN, and Bilayered-ANN. These ML

algorithms are part of the statistical and machine learning toolbox of MATLAB, which has

various tools that can be used for both the pre- and post-processing of data.

Figure 29 shows the block diagram to train, test and evaluate the selected ML algorithms.

First, the dataset is loaded; the chosen dataset is constituted of more than 1500 EEG re-

cordings from 109 subjects that become between 1 and 2 minutes long and can be found in

Physio-net Goldberger et al. (2000). In this study, 30 people were randomly chosen to train,

test, and validate the proposed method. subsequently, the data are normalized between 0

and 1 to obtain better results. Next, we randomly split the dataset into 80 % for training and

20 % for testing. Then, the ML model is trained. The next step is to obtain the performance

metrics of the ML models (for example, using the confusion matrix), i.e., the performance

metrics to evaluate the ML algorithms, such as the area under the curve (AUC) and accuracy,

among others.

Load 
Dataset

Normalize
Dataset

Split 80-20
Dataset

Train
SVM

Test
SVM

Evaluate
SVM

Train
LDA

Test
LDA

Evaluate
LDA

Train
D.T.

Test
D.T.

Evaluate
D.T.

Train
KNN

Test
KNN

Evaluate
KNN

Train
N.B.

Test
N.B.

Evaluate
N.B.

Train
Narrow-ANN

Test
Narrow-ANN

Evaluate
Narrow-ANN

Train
Medium-ANN

Test
Medium-ANN

Evaluate
Medium-ANN

Train
Wide-ANN

Test
Wide-ANN

Evaluate
Wide-ANN

Train
Bilayed-ANN

Test
Bilayed-ANN

Evaluate
Bilayed-ANN

Figure 29: Block diagram for training, testing, and evaluating the ML algorithms.
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Chapter IV

4. Experimental results

4.1. Results obtained by the classification algorithms

This chapter compares the different algorithms used for classifying EEG signals using

the proposed methodology, in which the characteristics of the EEG signals were extracted

through a customizing application developed in the LabVIEW development platform. The

algorithms of ML and ANN were implemented in the Matlab programming environment for

PC. Table 10 shows the list of ML algorithms and ANN networks used to classify EEG

signals.

Table 10: List of algorithm used for EEG classification.
Machine Learning Artificial Neural Network
LDA Narrow-ANN
D.T. Medium-ANN
KNN Wide-ANN
N.B. Bilayed-ANN
SVM

4.1.1. Matrix of confusion

The confusion matrix is a popular measure used in solving problems of classification. Both

multiclass problems and binary classification issues can benefit from this. Other authors define

the confusion matrix as a table used to define a classification algorithm’s performance. The

Figure 30 shows the scheme of the confusion matrix for binary classification.

Predicted Class

TP
True Positive

FN
False Negative

FP
False Positive

TN
True NegativeA

ct
ua

l C
la

ss

Figure 30: Scheme of the confusion matrix for binary classification.
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The Figure 31 shows the confusion matrix (CM) of the four ANN algorithms trained for

the classification of EEG signals related to the state off relaxation, right hand, left hand,

both hands, and booth feet. The Figure 31(a) shows the CM of the Narrow-ANN algorithm.

The Figure 31(b) shows the CM of the Medium-ANN algorithm. The Figure 31(c) shows

the CM of the Wide-ANN algorithm. The Figure 31(d) shows the CM of the Bilayered-ANN

algorithm.

(a) (b)

(c) (d)

Figure 31: The confusion matrix (CM) of the four ANN algorithms trained for EEG signals
classification, related to the movements of hands and feet: (a) CM of the Narrow-ANN algo-
rithm, (b) CM of the Medium-ANN algorithm, (c) CM of the Wide-ANN algorithm, and (d)
CM of the Bilayered-ANN algorithm.
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(a)(a) (b)

(c) (d)

(e)

Figure 32: The confusion matrix (CM) of the five ML algorithms trained for EEG signals
classification, related to the movements of hands and feet: (a) CM of the LDA algorithm, (b)
CM of the D.T. algorithm, (c) CM of the KNN algorithm, and (d) CM of the N.B. algorithm,
CM of the SVM algorithm.

Figure 32 shows the CM of the five ML algorithms trained for the classification off the

EEG signal related to the different classes. Figure 32(a) shows the CM of the LDA algorithm.

Figure 32(b) shows the CM of the D.T. algorithm. Figure 32(c) shows the CM of the KNN
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algorithm. Figure 32(d) shows the CM of the N.B. algorithm. Figure 32(e) shows the CM of

the SVM algorithm. We notice that artificial neural networks produce the best results. The

fundamental reason is that artificial neural networks can classify, correlate, and recognize

hidden patterns in data, because during training, the network is trained to associate the

output with the input patterns.

4.2. Scoring metrics

To evaluate the performance of the ML algorithms, we used the following scoring metrics:

Accuracy, Error, Recall, Specificity, Precision and F1-Score. The performance evaluation of

the proposed ML was initiated by calculating Sensitivity, Specificity, Precision and Accuracy

Sadrawi et al. (2018); Guang-Hui et al. (2017). Sensitivity, also know as Recall Guang-Hui

et al. (2017), measures the proportion off positives that are correctly identified as such; it

can by (30). Similarly, Specificity measures the proportion off negatives that are correctly

identified as such; it can be calculated by (31). Precision is the proportion of true positives

among the positives predictions ; it can be calculated by (32). Accuracy is the proportion of

the total number of predictions that were correct Sharma et al. (2022); it can be calculated

by (33).

Recall =
TruePositives

FalseNegative + TruePositives
, (30)

Specificity =
TrueNegatives

FalsePositives + TrueNegatives
, (31)

Precision =
TruePositives

TruePositives + FalsePositives
, (32)

Accuracy =
TruePositives + TrueNegatives

TruePositives + FalsePositives + TrueNegatives + FalseNegatives
. (33)

F1-Score is a method for combining Precision and Recall into a single measure that includes

both Castro et al. (2020). Neither Accuracy nor Recall can analyze the complete situation

on their own. We might have outstanding Precision but poor Recall, or vice versa, poor

Precision but good Recall. With F1-Score, one can represent both concerns with a single

54



score Grandini et al. (2020). Once Accuracy and Recall for a binary or multiclass classification

task have been computed, the two scores may be combined to calculate the F1-Score metric;

it can be calculated by (34):

F1 − Score =
2 ∗ Precision ∗Recall

Precision + Recall
. (34)

The precision and recall balance is expressed in F1 scores Singh et al. (2021). The test

accuracy is also gauged by the F1 score. It is defined as the weighted mean of the precision

and recall. Its worst value is 0, while its maximum value is 1 Arjaria et al. (2021). Equations

(30)–(34) are valid for binary and multiclass classification; however, when used for multiclass

problems, they must be calculated for each class and then averaged to obtain each metric

per model.

Table 11 shows the average scores obtained in each performance metrics by the nine ML

algorithms selected in this study. The first parameter analyzed was Accuracy, where the LDA

model presented an Accuracy score of 0.9229; D.T. obtained 0.9803; KNN obtained 0.8996;

N.B. obtained 0.9373; SVM obtained 0.9803; Narrow-ANN, Medium-ANN, and Bilayered-

ANN obtained 0.9857; finally, Wide-ANN obtained 0.9821. The Narrow-ANN, Medium-ANN,

and Bilayered-ANN models obtained the best Accuracy score (0.9857). Regarding the Error

metric, we can see that the LDA, D.T., N.B., SVM, Narrow-ANN, Medium-ANN, Wide-

ANN, and Bilayered-ANN algorithms achieved a score less than 0.1, while the KNN model

obtained an Error greater than 0.1; therefore, the models with the lowest Error were Narrow-

ANN, Medium-ANN, and Bilayered-ANN (0.0143). Considering the Recall parameter, we

observed that the Narrow-ANN algorithm presented the highest score of 0.9863, while the

KNN algorithm obtained the lowest score of 0.9037. Regarding the Specificity metric, all the

algorithms achieved a score greater than 0.9; the ML models with the best results were the

Narrow-ANN, Medium-ANN, and Bilayered-ANN models, all scoring 0.9964. Regarding the

Precision metric, the Bilayered-ANN algorithm is the one that presented the best result, with

0.9859, while the KNN algorithm presented the lowest score, with 0.9099. Regarding the F1-

Score parameter, the LDA, D.T., N.B., SVM, Narrow-ANN, Medium-ANN, Wide-ANN, and

Bilayered-ANN algorithms achieved scores greater than 0.91, while the KNN model obtained

a score below 0.91. The algorithm that presented the best F1-Score result was Narrow-ANN,

with 0.9859.
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Table 11: The average score parameters of the EEG classification algorithms.

Average scoring parameters

ML Algorithm Accuracy Error Recall Specificity Precision F1-Score
LDA 0.9229 0.0771 0.9219 0.9807 0.9332 0.9228
D.T. 0.9803 0.0197 0.9777 0.9951 0.9792 0.9783
KNN 0.8996 0.1004 0.9037 0.9747 0.9099 0.9047
N.B. 0.9373 0.0627 0.9384 0.9844 0.9382 0.9378
SVM 0.9803 0.0197 0.9789 0.9950 0.9827 0.9803
Narrow-ANN 0.9857 0.0143 0.9863 0.9964 0.9857 0.9859
Medium-ANN 0.9857 0.0143 0.9854 0.9964 0.9856 0.9855
Wide-ANN 0.9821 0.0179 0.9834 0.9955 0.9824 0.9828
Bilayered-ANN 0.9857 0.0143 0.9854 0.9964 0.9859 0.9856

4.3. Performance Metrics

The metrics used to evaluate the performance of the ML and ANN algorithms were the

area under the average curve (AUC average), Cohen’s Kappa coefficient Vieira et al. (2010),

Matthews correlation coefficient Matthews (1975), and model loss. The receiver operating

characteristics (ROC) curve is the plot between sensitivity and the FP rate for various th-

reshold values. The AUC is the area under this ROC curve; it is used to measure the quality of

the classification model Sharma et al. (2022). Figure 33 shows the ROC curves of the four DL

algorithms (neural networks) trained for the classification of EEG signals. These algorithms

are Narrow-ANN, Medium-ANN, Wide-ANN, and Bilayered-ANN. The algorithm that pre-

sented the best performance metrics was Medium-ANN, with an AUC average of 0.9998; it

was the closest to the upper-left corner of the ROC space. Figure 34 shows the ROC curves of

the top four ML algorithms trained for the classification of EEG signals related to the state

of relaxation, right hand, left hand, both hands, and both feet. These algorithms are LDA,

SVM, D.T and N.B. The algorithm that presented the best performance metrics was SVM,

with an AUC average of 0.9988. The ROC curves showed a compromise between Sensitivity

and Specificity. The SVM algorithm was the closest to the upper-left corner of the ROC spa-

ce, while the D.T. model was closer to the 45-degree diagonal. Classifiers that obtain curves

closer to the upper-left corner indicate better performance, while classifiers with ROC curves

closer to the 45-degree diagonal of the ROC space are less accurate.
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Figure 33: The receiver operating characteristic (ROC) curves of the four ANN algorithms
trained for EEG signals classification, related to the movements of hands and feet: (a) ROC
curves of the Narrow-ANN algorithm, (b) ROC curves of the Medium-ANN algorithm, (c)
ROC curves of the Wide-ANN algorithm, and (d) ROC curves of the Bilayered-ANN algo-
rithm.

Concerning the AUC average metric, all algorithms achieved a score greater than 0.90,

where the top three ML models were the SVM, Medium-ANN, and Bilayered-ANN models,

which obtained the highest scores (AUC scores).
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(a)

(c)

(b)

(d)

(e)

Figure 34: The receiver operating characteristic (ROC) curves of the top four ML algorithms
trained for EEG signals classification, related to the movements of hands and feet: (a) ROC
curves of the LDA algorithm, (b) ROC curves of the SVM algorithm, (c) ROC curves of the
D.T. algorithm, and (d) ROC curves of the N.B. algorithm.
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Regarding Cohen’s Kappa coefficient, a score above 0.8 indicates exemplary commitment,

while zero or less indicates poor commitment. The LDA and KNN algorithms obtained Co-

hen’s Kappa coefficients less than 0.80 but greater than zero. While the D.T., N.B., SVM,

Narrow-ANN, Medium-ANN, Wide-ANN, and Bilayered-ANN algorithms achieved Cohen’s

Kappa coefficients of 0.9384, 0.8040, 0.9384, 0.9552, 0.9552, 0.9440, and 0.9552, respectively,

where the Narrow-ANN, Medium-ANN, and Bilayered-ANN algorithms achieved the highest

scores. In addition, we used the Matthews correlation coefficient, which has been widely

used as a performance metric for ML algorithms since 2000. The best scores obtained were

presented by the D.T, N.B., SVM, Narrow-ANN, Medium-ANN, Wide-ANN, and Bilayered-

ANN models (0.9736, 0.9225, 0.9757, 0.9824, 0.9819, 0.9783, and 0.9820, respectively), with

Narrow-ANN obtaining the best score, while the KNN algorithm achieved the lowest score of

0.8810. The ML model with the lowest loss was Narrow-ANN, with 0.0136, followed by the

Medium-ANN and Bilayered-ANN models, both with 0.0147, while the ML algorithm with

the highest loss was KNN. Table 12 presents the performance metrics achieved by each ML

algorithm.

Table 12: Performance metrics of the nine ML algorithms trained for EEG signal classification.

Performance Metrics

ML
Algorithm

AUC Average Cohen’s
Kappa

Coefficient

Matthews
Correlation
Coefficient

Loss

LDA 0.9889 0.7592 0.9072 0.0787
D.T. 0.9873 0.9384 0.9736 0.0229
KNN 0.9392 0.6864 0.8810 0.0961
N.B. 0.9935 0.8040 0.9225 0.0616
SVM 0.9988 0.9384 0.9757 0.0217

Narrow-ANN 0.9982 0.9552 0.9824 0.0136
Medium-ANN 0.9998 0.9552 0.9819 0.0147

Wide-ANN 0.9984 0.9440 0.9783 0.0165
Bilayered-ANN 0.9988 0.9552 0.9820 0.0147
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4.4. Comparative analysis of ML and ANN with ConfusionVis

In machine learning, the presumably best model is chosen from a collection of model

candidates obtained by evaluating various model types, hyperparameters, or feature subsets,

among others. In this paper, it is proposed to use ConfusionVis, a model-agnostic technique

for evaluating and comparing multiclass classifiers based on their confusion matrices Theissler

et al. (2022). Figure 35 depicts the ConfusionVis achieved for the nine ML models chosen for

EEG signal classification. Figure 35(a) shows the average Accuracy score per ML model, whe-

re it can be observed that Narrow-ANN had the best Accuracy score. Figure 35(b) illustrates

the Confusion Matrix Similarity results, where it can be seen that the D.T., SVM, Narrow-

ANN, and Medium-ANN models obtained the best similarity. Figure 35(c) depicts the Error

by Class scores, where it can be observed that Medium-NN and Narrow-ANN achieved the

lowest Error score in most classes of movements classified from the EEG signals. Figure 35(d)

shows the Error by Model scores, where it can also be seen that Medium-ANN obtained the

lowest Error score, followed by Bilayered-NN, Narrow-ANN, and decision tree (D.T.).

Averaged Accuracy Per Model Confusion Matrix Similarity

D.T.

D.T.

D.T.

KNN

KNN

KNN

LDA

LDA

LDA

N.B.

N.B.

N.B.

SVM

SVM

SVM

Narrow
ANN

Narrow
ANN

Narrow-ANN

Medium
ANN

Medium
ANN

Medium-ANN

Wide
ANN

Wide
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Wide-ANN

Bilayered
ANN

Bilayered
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Model ModelRelaxing
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Both Feet

Both Feet

Both Fits
Both Fits

Error-by-Class Error-by-Model
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2._KNN
3._LDA
4._N.B.
5._SVM
6._Narrow-ANN
7._Medium-ANN7._Medium-ANN
8._Wide-ANN
9._Bilayered-ANN

Machine Lerarning Models

Figure 35: ConfusionVis Theissler et al. (2022): Comparative evaluation of the multiclass
classifiers based on confusion matrices. (a) Averaged Accuracy per model, (b) Confusion
Matrix Similarity, (c) Error by class, and (d) Error by Model.
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4.5. Training time metrics

Figure 36 shows the training time of the nine ML algorithms tested, with N.B., LDA,

and KNN having the shortest training time. However, the results shown in Tables 11 and

12 show that these algorithms had the lowest performance metrics, with the exception of

D.T. In contrast, the SVM, Narrow-ANN, Medium-ANN, Wide-ANN, and Bilayered-ANN

algorithms had the most considerable training times of 0.13546, 0.37135, 0.16956, 0.36255,

and 0.45722 s, respectively, with the Bilayered-ANN algorithm having the longest training

time. However, these algorithms had the best performance metrics, as shown in Tables 11-12

and Figures 33-35. Therefore, the data science engineer or researcher must perform a cost–

benefit analysis regarding Accuracy and processing time. In most circumstances, engineers

favor Accuracy over training time, because training is only done a few times and only the

trained ML model is employed. For this reason, in this study, it is more convenient to select

the Narrow-ANN model.

Figure 36: Training time of the nine ML models.
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4.6. Discussion

In this study, we observed that the different features used were helpful for the classification

of EEG signals, as proposed in our hypothesis. The presented features are based on the time

domain: amplitude, frequency, phase, peak–peak value, negative peak, positive peak, median,

mode, average, mean square error value, standard deviation, summation, variance, kurtosis,

and skewness. We consider that they are good features for classifying EEG signals related

to movements. Using these features, the ML model that achieved the best performance was

Medium-ANN, with: average area under the curve of 0.9998, Cohen’s Kappa coefficient of

0.9552, Matthew correlation coefficient of 0.9819 and loss of 0.0147.

We observed that the performance metrics obtained from the nine machine learning al-

gorithms were good. Using standard features in different frequency bands and related to a

particular class allowed machine learning and deep learning algorithms to obtain excellent

performance metrics, as shown in Tables 11-12 and Figures 34-35; this is because the proposed

frequency bands and features improved the separability of the data, making the classification

algorithms substantially better.

Regardless, the data science engineer/scientist is in charge of carrying out the corres-

ponding analysis in terms of costs–benefits and precision concerning the information pro-

cessing time. In most cases, ML models with better precision are chosen, and training time

is usually sacrificed. Since the training of the ML algorithms is performed once, only the

trained model is used for the assigned task. The Medium-ANN algorithm was selected for

this reason and because its performance metrics were the best. Therefore, feature extrac-

tion is worth mentioning among the processes that improve relevant information acquisition

and ensure better performance metrics when training EEG signal classification algorithms,

as shown in different studies. Our results are consistent with other spectrogram methods

implemented for identifying EEG patterns in persons with motor impairment using similar

brain sources that were analyzed in this study Vrbancic and Podgorelec (2018). Many human

behavior fields still a challenge for BCI’s, findings from this study may provide complemen-

tary data for other studies reporting findings from central nervous system’s damage with

residuals of motor impairment of upper limb movement Bartur et al. (2019). In addition to

limb paralysis, limb loss represents an obstacle to quality of life for which the results of this

study offer a comprehensive and reliable technique for extracting electrical brain sources for
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human movement programming. As in other research Samuel et al. (2017b), results of the

present study provide consistent and accurate information for future controlling inputs for

the adaptation of prosthesis. As reported elsewhere Samuel et al. (2017a), we conclude that

it is necessary to increase movement classes in EEG features extraction for providing mecha-

tronic systems controlled by means of BCI, suitable and reliable patterns corresponding for

target movements.

4.7. Proposed Usage Scenario

The ML algorithms proposed in this research study could be implemented in high-

performance embedded systems or edge computing devices as verified in previous studies

Contreras-Luján et al. (2022); Aguirre-Castro et al. (2022). These act as the central control

system, which is in charge of communicating with the BCI to acquire EEG signals. Likewise,

the control system is in charge of carrying out the digital processing of the EEG signals,

the extraction of features, the classification, and the translation (decoding and execution)

of the control commands. The mechatronic control system would have a trained ML model

which would allow a user with some motor disability to perform some motor activities, such

as opening and closing the right fist, left fist, or both fists through the classification of EEG

signals.

Figure 37 depicts a conceptual diagram of the prospective mechatronic control system.

We could consider this model the first step in developing intelligent prostheses that integrate

the system’s several components. The future characteristics to be developed are lower cost,

size, portability, low power consumption, and reliable communication with the BCI.
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Figure 37: Suggested usage scenario for an application of mechatronic control system.
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Chapter V

5. Conclusions

The methodology presented for classifying motor movements through the processing of

EEG signals from 30 users showed satisfactory results due to the performance metrics ob-

tained from the different machine learning models and artificial neural networks. The clas-

sification of EEG signals is related to movements of the left hand, right hand, both hands,

feet, and relaxation. As a result of EEG signal processing, a dataset with custom metrics or

features was created and used for training machine learning algorithms and artificial neural

networks. The data set was obtained by reading files in EDF+ formats containing 64 EEG

signals, with approximately 2 minutes and 160 samples per second. Electrodes in positions

C3, C1, CZ, C2, and C4, which are under the international system 10-10, and are related

to the motor cortex of the human brain, were selected. The EEG signals were then divided

into segments, line noise was removed through preprocessing, each signal associated with a

particular position was filtered in a distinct frequency band, and three characteristics were

retrieved in the temporal domain. The signal analysis results are a vector of 15 features in the

time domain, with their respective label to the corresponding class. The custom dataset was

created to train and evaluate the performance metrics of five machine learning algorithms

and four artificial neural network algorithms for classifying EEG signals related to motor

movements. From the different generated models, the Medium-ANN model achieved the best

performance metrics, with an average AUC of 0.9819, a Cohen’s Kappa coefficient of 0.9552,

a Matthews correlation coefficient of 0.9819, and a loss of 0.0147. It is worth mentioning

that with the proposed methodology, eight of the nine trained models obtained an accuracy

above 90 percent, which is considered good. The model that failed to be above this threshold

was the KNN, with an accuracy of 0.8996. These findings allow our approach to be applied

in different scenarios, such as the implementation of robotic prostheses. In these types of

applications, using physical quantities is an acceptable alternative when hardware resources

are constrained, or in embedded systems or edge computing devices, which has the advantage

of low cost, small size, portability, low power consumption, and reliable communication with

BCIs. Therefore, with the proposed method, we can obtain quantifiable information about
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the motor movements of the hands and feet that can be obtained through the extraction

of features and performance metrics from machine learning algorithms and artificial neural

networks. We also think that the proposed method can allow us to generate different data

sets that can be used in future studies since the developed software can be easily customized

to analyze EEG signals.

5.1. Future Work

The following is a list of potential improvements that could be included in the LabVIEW

development environment as part of future work on feature extraction software advance-

ments.

-Publish the current version of the developed software in a high-impact JCR journal.

- Upgrade the development platform version from LabVIEW 2015 to LabVIEW 2020, to

implement the training process of ML and DL models with the Deep Learning Module.

- Add additional signal preprocessing techniques, including principal component analysis,

muscle movement removal, and non-linear noise removal filters.

- Add feature extraction in the frequency domain, which is a fundamental piece to impro-

ving the performance metrics of classification algorithms, whether they are machine learning

algorithms or artificial neural networks.

- Add feature extraction in the time-frequency domain; these metrics are a current trend

because they allow deep learning and transfer learning algorithms.

- Software parallelization: a software update can be beneficial; carrying out parallel analysis

and feature extraction of the different EEG signals coming from multiple electrodes can im-

prove the efficiency and effectiveness of the system, taking advantage of multi-core processors.

- The implemented methodology can be conditioned to be used within the area of Robotics,

particularly for the control of robotic arms and prostheses and wheelchairs, and mobile ro-

bots.

- Using feature extraction in the time-frequency domain will allow the use of pre-trained deep

neural networks, which have shown outstanding results for pattern recognition and classifi-

cation.

66



-Optimization of machine learning and deep learning algorithms and selection of the best

characteristics.

- Finally, implementing the proposed methodology in embedded systems or edge computing

devices such as MyRIO, RasberryPi, and NVIDIA Jetson could be possible to carry out

control strategies.
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Appendix

A. Fragment of the dataset created for this study

Figure 38: Fragment of the dataset created for this study.
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B. Front panel (App) for EEG signal analysis

Figure 39: Front panel of software (App) developed for EEG signal analysis.
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C. Matlab Code for LDA Algorithm

1 %Training of Lineal Discriminant Analysis Algorithm: ML

2 %Develop by: Francisco Javier Ramirez Arias

3

4 %Read of Data

5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6 data = ReadData("Dataset08 Balanced");

7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

8

9 %Pre−processing

10 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

11 data.Classes = categorical(data.Classes);

12 data.Classes = renamecats(data.Classes,{'Relaxing','Left Hand',...

13 'Rigth Hand','Both Feet','Both Fits'});

14 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

15

16 %Normalization

17 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

18 data{:,1:end−1} = normalize(data{:,1:end−1});

19 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

20

21 %Data for training and test

22 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

23 dp = cvpartition(size(data,1),"HoldOut",0.2);

24 train = data(dp.training,:);

25 test = data(dp.test,:);

26 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

27

28 %Training of the model

29 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

30 mdl = fitcdiscr(train,"Classes");

31

32 %Prediction of the model

33 [lb,ss]=predict(mdl,test);

34 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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35

36 %Metrics of the model

37 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

38 cm = confusionchart(test.Classes,lb);

39 cm.Title = 'EEG−Signal Classification';

40 [m1,¬] = confusionmat(test.Classes,lb);

41 [Result,ReferenceResult] = multiclass metrics special(m1)

42 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

43

44 %ROC Curves

45 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

46 figure(2)

47 hold on

48 Classes = categories(mdl.ClassNames)

49 AUC = zeros(length(mdl.ClassNames),1);

50 for i=1:length(mdl.ClassNames)

51 [xr, yr, ¬, auc] = perfcurve(test.Classes,ss(:, i),Classes{i});

52 plot(xr, yr, 'linewidth', 1)

53 legends{i} = sprintf('AUC for %s class: %.3f', Classes{i}, auc);

54 AUC(i,:) = auc;

55 end

56

57 AUCAverage = mean(AUC)

58 mdlloss = loss(mdl,test,"Classes")

59

60 line([0 1], [0 1], 'linestyle', '−−', 'color', 'r');

61 legends{6} = 'Reference Line';

62 lgd =legend(legends, 'location', 'southeast');

63 til = sprintf('AUC Average: %.3f',AUCAverage);

64 title(lgd,til)

65 xlabel('FPR'), ylabel('TPR');

66 title('ROC for EEG Classification (1 vs Others)');

67 axis square

68 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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D. Matlab Code for Tree Model

1 %Training of Lineal Discriminant Analysis Algorithm: ML

2 %Develop by: Francisco Javier Ramirez Arias

3

4

5 %Desarrollado por: Francisco Javier Ramirez Arias

6 %Asesor Everardo Inzunza Gonzalez

7 %Universidad Autonoma de Baja California

8 %Proyecto Doctoral

9

10 %Lectura de los datos

11 data = ReadData("Dataset08 Balanced");

12

13 %Preprocesamiento de la informacion

14 data.Classes = categorical(data.Classes);

15 data.Classes = renamecats(data.Classes,{'Relaxing','Left Hand',...

16 'Rigth Hand','Both Feet','Both Fits'});

17

18 %Normalizacion

19 data{:,1:end−1} = normalize(data{:,1:end−1});

20

21 %Division de los datos de entrenamiento y de prueba

22 dp = cvpartition(size(data,1),"HoldOut",0.2);

23 train = data(dp.training,:);

24 test = data(dp.test,:);

25

26 %Entrenamiento del modelo

27 mdl = fitctree(train,"Classes");

28

29 %Prediccion del modelo

30 [lb,ss]=predict(mdl,test);

31

32 %Graficas y metricas del modelo

33 cm = confusionchart(test.Classes,lb);

34 cm.Title = 'EEG−Signal Classification';
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35 [m1,¬] = confusionmat(test.Classes,lb);

36 [Result,ReferenceResult] = multiclass metrics special(m1)

37

38 %Curvas ROC y Area Bajo la Curva

39 figure(2)

40 hold on

41 Classes = categories(mdl.ClassNames)

42 AUC = zeros(length(mdl.ClassNames),1);

43 for i=1:length(mdl.ClassNames)

44 [xr, yr, ¬, auc] = perfcurve(test.Classes,ss(:, i),Classes{i});

45 plot(xr, yr, 'linewidth', 1)

46 legends{i} = sprintf('AUC for %s class: %.3f', Classes{i}, auc);

47 AUC(i,:) = auc;

48

49 end

50

51 AUCAverage = mean(AUC)

52 mdlloss = loss(mdl,test,"Classes")

53

54 line([0 1], [0 1], 'linestyle', '−−', 'color', 'r');

55 legends{6} = 'Reference Line';

56 lgd =legend(legends, 'location', 'southeast');

57 til = sprintf('AUC Average: %.3f',AUCAverage);

58 title(lgd,til)

59 xlabel('FPR'), ylabel('TPR');

60 title('ROC for EEG Classification (1 vs Others)');

61 axis square
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E. Matlab Code for KNN Model

1

2

3

4 %%Desarrollado por: Francisco Javier Ramirez Arias

5 %%Asesor Everardo Inzunza Gonzalez

6 %%Universidad Autonoma de Baja California

7 %%Proyecto Doctoral

8

9 %Lectura de los datos

10 data = ReadData("Dataset08 Balanced");

11

12 %Preprocesamiento de la informacion

13 data.Classes = categorical(data.Classes);

14 data.Classes = renamecats(data.Classes,{'Relaxing','Left Hand',...

15 'Rigth Hand','Both Feet','Both Fits'});

16

17 %Normalizacion

18 data{:,1:end−1} = normalize(data{:,1:end−1});

19

20 %Division de los datos de entrenamiento y de prueba

21 dp = cvpartition(size(data,1),"HoldOut",0.2);

22 train = data(dp.training,:);

23 test = data(dp.test,:);

24

25 %Entrenamiento del modelos

26 mdl = fitcknn(train,"Classes");

27

28 %Prediccion del modelo

29 [lb,ss]=predict(mdl,test);

30

31 %Graficas y metricas del modelo

32 cm = confusionchart(test.Classes,lb);

33 cm.Title = 'EEG−Signal Classification';

34 [m1,¬] = confusionmat(test.Classes,lb);

74



35 [Result,ReferenceResult] = multiclass metrics special(m1)

36

37 %Curvas ROC y Area Bajo la Curva

38 figure(2)

39 hold on

40 Classes = categories(mdl.ClassNames)

41 AUC = zeros(length(mdl.ClassNames),1);

42 for i=1:length(mdl.ClassNames)

43 [xr, yr, ¬, auc] = perfcurve(test.Classes,ss(:, i),Classes{i});

44 plot(xr, yr, 'linewidth', 1)

45 legends{i} = sprintf('AUC for %s class: %.3f', Classes{i}, auc);

46 AUC(i,:) = auc;

47

48 end

49

50 AUCAverage = mean(AUC)

51 mdlloss = loss(mdl,test,"Classes")

52

53 line([0 1], [0 1], 'linestyle', '−−', 'color', 'r');

54 legends{6} = 'Reference Line';

55 lgd =legend(legends, 'location', 'southeast');

56 til = sprintf('AUC Average: %.3f',AUCAverage);

57 title(lgd,til)

58 xlabel('FPR'), ylabel('TPR');

59 title('ROC for EEG Classification (1 vs Others)');

60 axis square
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F. Matlab Code for NB Model

1

2

3

4 %%Desarrollado por: Francisco Javier Ramirez Arias

5 %%Asesor Everardo Inzunza Gonzalez

6 %%Universidad Autonoma de Baja California

7 %%Proyecto Doctoral

8

9 %Lectura de los datos

10 data = ReadData("Dataset08 Balanced");

11

12 %Preprocesamiento de la informacion

13 data.Classes = categorical(data.Classes);

14 data.Classes = renamecats(data.Classes,{'Relaxing','Left Hand',...

15 'Rigth Hand','Both Feet','Both Fits'});

16

17 %Normalizacion

18 data{:,1:end−1} = normalize(data{:,1:end−1});

19

20 %Division de los datos de entrenamiento y de prueba

21 dp = cvpartition(size(data,1),"HoldOut",0.2);

22 train = data(dp.training,:);

23 test = data(dp.test,:);

24

25 %Entrenamiento del modelos

26 mdl = fitcnb(train,"Classes");

27

28 %Prediccion del modelo

29 [lb,ss]=predict(mdl,test);

30

31 %Graficas y metricas del modelo

32 cm = confusionchart(test.Classes,lb);

33 cm.Title = 'EEG−Signal Classification';

34 [m1,¬] = confusionmat(test.Classes,lb);
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35 [Result,ReferenceResult] = multiclass metrics special(m1)

36

37 %Curvas ROC y Area Bajo la Curva

38 figure(2)

39 hold on

40 Classes = categories(mdl.ClassNames)

41 AUC = zeros(length(mdl.ClassNames),1);

42 for i=1:length(mdl.ClassNames)

43 [xr, yr, ¬, auc] = perfcurve(test.Classes,ss(:, i),Classes{i});

44 plot(xr, yr, 'linewidth', 1)

45 legends{i} = sprintf('AUC for %s class: %.3f', Classes{i}, auc);

46 AUC(i,:) = auc;

47

48 end

49

50 AUCAverage = mean(AUC)

51 mdlloss = loss(mdl,test,"Classes")

52

53 line([0 1], [0 1], 'linestyle', '−−', 'color', 'r');

54 legends{6} = 'Reference Line';

55 lgd =legend(legends, 'location', 'southeast');

56 til = sprintf('AUC Average: %.3f',AUCAverage);

57 title(lgd,til)

58 xlabel('FPR'), ylabel('TPR');

59 title('ROC for EEG Classification (1 vs Others)');

60 axis square
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G. Matlab Code for SVM Model

1

2

3

4 %%Desarrollado por: Francisco Javier Ramirez Arias

5 %%Asesor Everardo Inzunza Gonzalez

6 %%Universidad Autonoma de Baja California

7 %%Proyecto Doctoral

8

9 %Lectura de los datos

10 data = ReadData("Dataset08 Balanced");

11

12 %Preprocesamiento de la informacion

13 data.Classes = categorical(data.Classes);

14 data.Classes = renamecats(data.Classes,{'Relaxing','Left Hand',...

15 'Rigth Hand','Both Feet','Both Fits'});

16

17 %Normalizacion

18 data{:,1:end−1} = normalize(data{:,1:end−1});

19

20 %Division de los datos de entrenamiento y de prueba

21 dp = cvpartition(size(data,1),"HoldOut",0.2);

22 train = data(dp.training,:);

23 test = data(dp.test,:);

24

25 %Entrenamiento del modelos

26 mdl = fitcecoc(train,"Classes");

27 %Prediccion del modelo

28 [lb,ss]=predict(mdl,test);

29

30 %Graficas y metricas del modelo

31 cm = confusionchart(test.Classes,lb);

32 cm.Title = 'EEG−Signal Classification';

33 [m1,¬] = confusionmat(test.Classes,lb);

34 [Result,ReferenceResult] = multiclass metrics special(m1)
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35

36 %Curvas ROC y Area Bajo la Curva

37 figure(2)

38 hold on

39 Classes = categories(mdl.ClassNames)

40 AUC = zeros(length(mdl.ClassNames),1);

41 for i=1:length(mdl.ClassNames)

42 [xr, yr, ¬, auc] = perfcurve(test.Classes,ss(:, i),Classes{i});

43 plot(xr, yr, 'linewidth', 1)

44 legends{i} = sprintf('AUC for %s class: %.3f', Classes{i}, auc);

45 AUC(i,:) = auc;

46

47 end

48

49 AUCAverage = mean(AUC)

50 mdlloss = loss(mdl,test,"Classes")

51

52 line([0 1], [0 1], 'linestyle', '−−', 'color', 'r');

53 legends{6} = 'Reference Line';

54 lgd =legend(legends, 'location', 'southeast');

55 til = sprintf('AUC Average: %.3f',AUCAverage);

56 title(lgd,til)

57 xlabel('FPR'), ylabel('TPR');

58 title('ROC for EEG Classification (1 vs Others)');

59 axis square
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H. Matlab Code for Narrow-ANN Algorithm

1

2

3

4 %%Desarrollado por: Francisco Javier Ramirez Arias

5 %%Asesor Everardo Inzunza Gonzalez

6 %%Universidad Autonoma de Baja California

7 %%Proyecto Doctoral

8

9 clear all

10 %Lectura de los datos

11 data = ReadData("Dataset08 Balanced");

12

13 %Preprocesamiento de la informacion

14 data.Classes = categorical(data.Classes);

15 data.Classes = renamecats(data.Classes,{'Relaxing','Left Hand',...

16 'Rigth Hand','Both Feet','Both Fits'});

17

18 %Normalizacion

19 data{:,1:end−1} = normalize(data{:,1:end−1});

20

21 %Division de los datos de entrenamiento y de prueba

22 dp = cvpartition(size(data,1),"HoldOut",0.2);

23 train = data(dp.training,:);

24 test = data(dp.test,:);

25

26 %Entrenamiento del modelo

27 mdl = fitcnet(...

28 train, ...

29 "Classes", ...

30 'LayerSizes', 10, ...

31 'Activations', 'relu', ...

32 'Lambda', 0, ...

33 'IterationLimit', 1000, ...

34 'Standardize', true, ...
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35 'ClassNames', categorical({'Relaxing'; 'Left Hand'; 'Rigth ...

Hand';...

36 'Both Feet'; 'Both Fits'}, {'Relaxing' 'Left Hand' 'Rigth Hand'...

37 'Both Feet' 'Both Fits'}));

38

39 %Prediccion del modelo

40 [lb,ss]=predict(mdl,test);

41

42 %Graficas y metricas del modelo

43 cm = confusionchart(test.Classes,lb);

44 cm.Title = 'EEG−Signal Classification';

45 [m1,¬] = confusionmat(test.Classes,lb);

46 [Result,ReferenceResult] = multiclass metrics special(m1)

47 %

48 % %Curvas ROC y Area Bajo la Curva

49 figure(2)

50 hold on

51 Classes = categories(mdl.ClassNames)

52 AUC = zeros(length(mdl.ClassNames),1);

53 for i=1:length(mdl.ClassNames)

54 [xr, yr, ¬, auc] = perfcurve(test.Classes,ss(:, i),Classes{i});

55 plot(xr, yr, 'linewidth', 1)

56 legends{i} = sprintf('AUC for %s class: %.3f', Classes{i}, auc);

57 AUC(i,:) = auc;

58

59 end

60 %

61 AUCAverage = mean(AUC)

62 mdlloss = loss(mdl,test,"Classes")

63 %

64 line([0 1], [0 1], 'linestyle', '−−', 'color', 'r');

65 legends{6} = 'Reference Line';

66 lgd =legend(legends, 'location', 'southeast');

67 til = sprintf('AUC Average: %.3f',AUCAverage);

68 title(lgd,til)

69 xlabel('FPR'), ylabel('TPR');

70 title('ROC for EEG Classification (1 vs Others)');

71 axis square
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I. Matlab Code for Medium-ANN Allgorithm

1

2

3 %%Desarrollado por: Francisco Javier Ramirez Arias

4 %%Asesor Everardo Inzunza Gonzalez

5 %%Universidad Autonoma de Baja California

6 %%Proyecto Doctoral

7

8 clear all

9 %Lectura de los datos

10 data = ReadData("Dataset08 Balanced");

11

12 %Preprocesamiento de la informacion

13 data.Classes = categorical(data.Classes);

14 data.Classes = renamecats(data.Classes,{'Relaxing','Left Hand',...

15 'Rigth Hand','Both Feet','Both Fits'});

16

17 %Normalizacion

18 data{:,1:end−1} = normalize(data{:,1:end−1});

19

20 %Division de los datos de entrenamiento y de prueba

21 dp = cvpartition(size(data,1),"HoldOut",0.2);

22 train = data(dp.training,:);

23 test = data(dp.test,:);

24

25 %Entrenamiento del modelo

26 mdl = fitcnet(...

27 train, ...

28 "Classes", ...

29 'LayerSizes', 25, ...

30 'Activations', 'relu', ...

31 'Lambda', 0, ...

32 'IterationLimit', 1000, ...

33 'Standardize', true, ...

34 'ClassNames', categorical({'Relaxing'; 'Left Hand';...
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35 'Rigth Hand'; 'Both Feet'; 'Both Fits'}, {'Relaxing'...

36 'Left Hand' 'Rigth Hand' 'Both Feet' 'Both Fits'}));

37

38

39 %Prediccion del modelo

40 [lb,ss]=predict(mdl,test);

41

42 %Graficas y metricas del modelo

43 cm = confusionchart(test.Classes,lb);

44 cm.Title = 'EEG−Signal Classification';

45 [m1,¬] = confusionmat(test.Classes,lb);

46 [Result,ReferenceResult] = multiclass metrics special(m1)

47 %

48 % %Curvas ROC y Area Bajo la Curva

49 figure(2)

50 hold on

51 Classes = categories(mdl.ClassNames)

52 AUC = zeros(length(mdl.ClassNames),1);

53 for i=1:length(mdl.ClassNames)

54 [xr, yr, ¬, auc] = perfcurve(test.Classes,ss(:, i),Classes{i});

55 plot(xr, yr, 'linewidth', 1)

56 legends{i} = sprintf('AUC for %s class: %.3f', Classes{i}, auc);

57 AUC(i,:) = auc;

58

59 end

60 %

61 AUCAverage = mean(AUC)

62 mdlloss = loss(mdl,test,"Classes")

63 %

64 line([0 1], [0 1], 'linestyle', '−−', 'color', 'r');

65 legends{6} = 'Reference Line';

66 lgd =legend(legends, 'location', 'southeast');

67 til = sprintf('AUC Average: %.3f',AUCAverage);

68 title(lgd,til)

69 xlabel('FPR'), ylabel('TPR');

70 title('ROC for EEG Classification (1 vs Others)');

71 axis square
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J. Matlab Code for Wide Model

1

2

3 %%Desarrollado por: Francisco Javier Ramirez Arias

4 %%Asesor Everardo Inzunza Gonzalez

5 %%Universidad Autonoma de Baja California

6 %%Proyecto Doctoral

7

8 clear all

9 %Lectura de los datos

10 data = ReadData("Dataset08 Balanced");

11

12 %Preprocesamiento de la informacion

13 data.Classes = categorical(data.Classes);

14 data.Classes = renamecats(data.Classes,{'Relaxing','Left Hand',...

15 'Rigth Hand','Both Feet','Both Fits'});

16

17 %Normalizacion

18 data{:,1:end−1} = normalize(data{:,1:end−1});

19

20 %Division de los datos de entrenamiento y de prueba

21 dp = cvpartition(size(data,1),"HoldOut",0.2);

22 train = data(dp.training,:);

23 test = data(dp.test,:);

24

25 %Entrenamiento del modelo

26 mdl = fitcnet(...

27 train, ...

28 "Classes", ...

29 'LayerSizes', 100, ...

30 'Activations', 'relu', ...

31 'Lambda', 0, ...

32 'IterationLimit', 1000, ...

33 'Standardize', true, ...

34 'ClassNames', categorical({'Relaxing'; 'Left Hand';...

85



35 'Rigth Hand'; 'Both Feet'; 'Both Fits'},...

36 {'Relaxing' 'Left Hand' 'Rigth Hand' 'Both Feet' 'Both Fits'}));

37

38 %Prediccion del modelo

39 [lb,ss]=predict(mdl,test);

40

41 %Graficas y metricas del modelo

42 cm = confusionchart(test.Classes,lb);

43 cm.Title = 'EEG−Signal Classification';

44 [m1,¬] = confusionmat(test.Classes,lb);

45 [Result,ReferenceResult] = multiclass metrics special(m1)

46 %

47 % %Curvas ROC y Area Bajo la Curva

48 figure(2)

49 hold on

50 Classes = categories(mdl.ClassNames)

51 AUC = zeros(length(mdl.ClassNames),1);

52 for i=1:length(mdl.ClassNames)

53 [xr, yr, ¬, auc] = perfcurve(test.Classes,ss(:, i),Classes{i});

54 plot(xr, yr, 'linewidth', 1)

55 legends{i} = sprintf('AUC for %s class: %.3f', Classes{i}, auc);

56 AUC(i,:) = auc;

57

58 end

59 %

60 AUCAverage = mean(AUC)

61 mdlloss = loss(mdl,test,"Classes")

62 %

63 line([0 1], [0 1], 'linestyle', '−−', 'color', 'r');

64 legends{6} = 'Reference Line';

65 lgd =legend(legends, 'location', 'southeast');

66 til = sprintf('AUC Average: %.3f',AUCAverage);

67 title(lgd,til)

68 xlabel('FPR'), ylabel('TPR');

69 title('ROC for EEG Classification (1 vs Others)');

70 axis square
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K. Matlab Code for Bilayed Model

1

2

3 %%Desarrollado por: Francisco Javier Ramirez Arias

4 %%Asesor Everardo Inzunza Gonzalez

5 %%Universidad Autonoma de Baja California

6 %%Proyecto Doctoral

7

8 clear all

9 %Lectura de los datos

10 data = ReadData("Dataset08 Balanced");

11

12 %Preprocesamiento de la informacion

13 data.Classes = categorical(data.Classes);

14 data.Classes = renamecats(data.Classes,{'Relaxing','Left Hand',...

15 'Rigth Hand','Both Feet','Both Fits'});

16

17 %Normalizacion

18 data{:,1:end−1} = normalize(data{:,1:end−1});

19

20 %Division de los datos de entrenamiento y de prueba

21 dp = cvpartition(size(data,1),"HoldOut",0.2);

22 train = data(dp.training,:);

23 test = data(dp.test,:);

24

25 inputTable = train;

26 predictorNames = {'C3 Amplitude', 'C3 Frequency', 'C3 Phase',...

27 'C1 PeakToPeak', 'C1 NegativePeak', 'C1 PositivePeak',...

28 'Cz Median', 'Cz Mode', 'Cz Mean', 'C2 RMS', 'C2 SD',...

29 'C2 Summation', 'C4 Variance', 'C4 Kurtosis', 'C4 Skewness'};

30 predictors = inputTable(:, predictorNames);

31 response = inputTable.Classes;

32

33

34 %Entrenamiento del modelo
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35

36 mdl = fitcnet(...

37 predictors, ...

38 response, ...

39 'LayerSizes', [10 10], ...

40 'Activations', 'relu', ...

41 'Lambda', 0, ...

42 'IterationLimit', 1000, ...

43 'Standardize', true, ...

44 'ClassNames', categorical({'Relaxing'; 'Left Hand';...

45 'Rigth Hand'; 'Both Feet'; 'Both Fits'},...

46 {'Relaxing' 'Left Hand' 'Rigth Hand' 'Both Feet' 'Both Fits'}));

47

48 %Prediccion del modelo

49 [lb,ss]=predict(mdl,test);

50

51 %Graficas y metricas del modelo

52 cm = confusionchart(test.Classes,lb);

53 cm.Title = 'EEG−Signal Classification';

54 [m1,¬] = confusionmat(test.Classes,lb);

55 [Result,ReferenceResult] = multiclass metrics special(m1)

56 %

57 % %Curvas ROC y Area Bajo la Curva

58 figure(2)

59 hold on

60 Classes = categories(mdl.ClassNames)

61 AUC = zeros(length(mdl.ClassNames),1);

62 for i=1:length(mdl.ClassNames)

63 [xr, yr, ¬, auc] = perfcurve(test.Classes,ss(:, i),Classes{i});

64 plot(xr, yr, 'linewidth', 1)

65 legends{i} = sprintf('AUC for %s class: %.3f', Classes{i}, auc);

66 AUC(i,:) = auc;

67

68 end

69 %

70 AUCAverage = mean(AUC)

71 mdlloss = loss(mdl,test,"Classes")

72 %
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73 line([0 1], [0 1], 'linestyle', '−−', 'color', 'r');

74 legends{6} = 'Reference Line';

75 lgd =legend(legends, 'location', 'southeast');

76 til = sprintf('AUC Average: %.3f',AUCAverage);

77 title(lgd,til)

78 xlabel('FPR'), ylabel('TPR');

79 title('ROC for EEG Classification (1 vs Others)');

80 axis square
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A. Apicella, F. Donnarumma, F. Isgrò, and R. Prevete. A survey on modern trainable

activation functions. Neural Networks, 138:14–32, June 2021. ISSN 0893-6080. doi: 10.

1016/j.neunet.2021.01.026. URL https://www.sciencedirect.com/science/article/

pii/S0893608021000344.

S. K. Arjaria, A. S. Rathore, and J. S. Cherian. Chapter 13 - Kidney disease prediction using a

machine learning approach: A comparative and comprehensive analysis. In P. N, S. Kautish,

and S.-L. Peng, editors, Demystifying Big Data, Machine Learning, and Deep Learning for

Healthcare Analytics, pages 307–333. Academic Press, Jan. 2021. ISBN 978-0-12-821633-

0. doi: 10.1016/B978-0-12-821633-0.00006-4. URL https://www.sciencedirect.com/

science/article/pii/B9780128216330000064.

J. Arshad, A. Qaisar, A.-U. Rehman, M. Shakir, M. K. Nazir, A. U. Rehman, E. T. Eldin,

N. A. Ghamry, and H. Hamam. Intelligent Control of Robotic Arm Using Brain Computer

91

https://www.sciencedirect.com/science/article/pii/S2590005619300037
https://www.sciencedirect.com/science/article/pii/S2590005619300037
http://arxiv.org/abs/1312.2877
https://www.sciencedirect.com/science/article/pii/S0893608021000344
https://www.sciencedirect.com/science/article/pii/S0893608021000344
https://www.sciencedirect.com/science/article/pii/B9780128216330000064
https://www.sciencedirect.com/science/article/pii/B9780128216330000064


Interface and Artificial Intelligence. Applied Sciences, 12(21):10813, Jan. 2022. ISSN

2076-3417. doi: 10.3390/app122110813. URL https://www.mdpi.com/2076-3417/12/

21/10813. Number: 21 Publisher: Multidisciplinary Digital Publishing Institute.

Y. Bai, J. He, X. Xia, Y. Wang, Y. Yang, H. Di, X. Li, and U. Ziemann. Spontaneous

transient brain states in EEG source space in disorders of consciousness. NeuroImage,

240:118407, Oct. 2021. ISSN 10538119. doi: 10.1016/j.neuroimage.2021.118407. URL

https://linkinghub.elsevier.com/retrieve/pii/S1053811921006820.

M. A. Balafar, A. R. Ramli, M. I. Saripan, and S. Mashohor. Review of brain MRI

image segmentation methods. Artificial Intelligence Review, 33(3):261–274, Mar. 2010.

ISSN 1573-7462. doi: 10.1007/s10462-010-9155-0. URL https://doi.org/10.1007/

s10462-010-9155-0.

G. Bartur, H. Pratt, and N. Soroker. Changes in mu and beta amplitude of the eeg

during upper limb movement correlate with motor impairment and structural dama-

ge in subacute stroke. Clinical Neurophysiology, 130(9):1644 – 1651, 2019. ISSN

13882457. URL https://libcon.rec.uabc.mx:5471/login.aspx?direct=true&db=

asn&AN=137872324&lang=es&site=ehost-live.

D. Berrar. Bayes’ theorem and naive bayes classifier. Encyclopedia of Bioinforma-

tics and Computational Biology: ABC of Bioinformatics, 403, 2018. doi: 10.1016/

B978-0-12-809633-8.20473-1.

L. Bi, X. Fan, and Y. Liu. EEG-Based Brain-Controlled Mobile Robots: A Survey. IEEE

Transactions on Human-Machine Systems, 43(2):161–176, Mar. 2013. ISSN 2168-2305. doi:

10.1109/TSMCC.2012.2219046. Conference Name: IEEE Transactions on Human-Machine

Systems.

A. Biasiucci, B. Franceschiello, and M. M. Murray. Electroencephalography. Current Biology,

29(3):R80–R85, Feb. 2019. ISSN 0960-9822. doi: 10.1016/j.cub.2018.11.052. URL https:

//www.sciencedirect.com/science/article/pii/S0960982218315513.

J. Bismuth, F. Vialatte, and J.-P. Lefaucheur. Relieving peripheral neuropathic pain by in-

creasing the power-ratio of low- over high- activities in the central cortical region with EEG-

92

https://www.mdpi.com/2076-3417/12/21/10813
https://www.mdpi.com/2076-3417/12/21/10813
https://linkinghub.elsevier.com/retrieve/pii/S1053811921006820
https://doi.org/10.1007/s10462-010-9155-0
https://doi.org/10.1007/s10462-010-9155-0
https://libcon.rec.uabc.mx:5471/login.aspx?direct=true&db=asn&AN=137872324&lang=es&site=ehost-live
https://libcon.rec.uabc.mx:5471/login.aspx?direct=true&db=asn&AN=137872324&lang=es&site=ehost-live
https://www.sciencedirect.com/science/article/pii/S0960982218315513
https://www.sciencedirect.com/science/article/pii/S0960982218315513


based neurofeedback: Study protocol for a controlled pilot trial (SMRPain study). Neu-

rophysiologie Clinique, 50(1):5–20, Feb. 2020. ISSN 09877053. doi: 10.1016/j.neucli.2019.

12.002. URL https://linkinghub.elsevier.com/retrieve/pii/S0987705320300022.

R. Bousseta, I. El Ouakouak, M. Gharbi, and F. Regragui. EEG Based Brain Computer

Interface for Controlling a Robot Arm Movement Through Thought. IRBM, 39(2):129–

135, Apr. 2018. ISSN 1959-0318. doi: 10.1016/j.irbm.2018.02.001. URL https://www.

sciencedirect.com/science/article/pii/S195903181830037X.

C. Brunner, N. Birbaumer, B. Blankertz, C. Guger, A. Kübler, D. Mattia, J. d. R. Millán,
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based Brain–Machine Interface for controlling a robot arm through four mental tasks. Neu-

rocomputing, 151:116–121, Mar. 2015. ISSN 0925-2312. doi: 10.1016/j.neucom.2014.09.078.

URL https://www.sciencedirect.com/science/article/pii/S092523121401323X.

M.-P. Hosseini, A. Hosseini, and K. Ahi. A Review on Machine Learning for EEG Signal

Processing in Bioengineering. IEEE Reviews in Biomedical Engineering, 14:204–218, 2021.

ISSN 1941-1189. doi: 10.1109/RBME.2020.2969915. Conference Name: IEEE Reviews in

Biomedical Engineering.

N. F. Ince, F. Goksu, and A. H. Tewfik. ECoG Based Brain Computer Interface with

Subset Selection. In A. Fred, J. Filipe, and H. Gamboa, editors, Biomedical Enginee-

ring Systems and Technologies, Communications in Computer and Information Scien-

ce, pages 357–374, Berlin, Heidelberg, 2009. Springer. ISBN 978-3-540-92219-3. doi:

10.1007/978-3-540-92219-3 27.

P. P. Ippolito. SVM: Feature Selection and Kernels, Sept. 2021. URL https://

towardsdatascience.com/svm-feature-selection-and-kernels-840781cc1a6c.

C. Janiesch, P. Zschech, and K. Heinrich. Machine learning and deep learning. Electronic

Markets, 31(3):685–695, 2021a. doi: 10.1007/s12525-021-00475-2.

C. Janiesch, P. Zschech, and K. Heinrich. Machine learning and deep learning. Electronic

Markets, 31(3):685–695, Sept. 2021b. ISSN 1422-8890. doi: 10.1007/s12525-021-00475-2.

URL https://doi.org/10.1007/s12525-021-00475-2.

99

https://www.hindawi.com/journals/ahci/2021/5515759/
https://www.sciencedirect.com/science/article/pii/S092523121401323X
https://towardsdatascience.com/svm-feature-selection-and-kernels-840781cc1a6c
https://towardsdatascience.com/svm-feature-selection-and-kernels-840781cc1a6c
https://doi.org/10.1007/s12525-021-00475-2


N. Jatupaiboon, S. Pan-ngum, and P. Israsena. Emotion classification using minimal EEG

channels and frequency bands. In The 2013 10th International Joint Conference on

Computer Science and Software Engineering (JCSSE), pages 21–24, May 2013. doi:

10.1109/JCSSE.2013.6567313.

J. Jeong. EEG dynamics in patients with Alzheimer’s disease. Clinical Neurophysiology,

115(7):1490–1505, July 2004. ISSN 1388-2457. doi: 10.1016/j.clinph.2004.01.001. URL

https://www.sciencedirect.com/science/article/pii/S138824570400015X.

V. Jurcak, D. Tsuzuki, and I. Dan. 10/20, 10/10, and 10/5 systems revisited: Their

validity as relative head-surface-based positioning systems. NeuroImage, 34(4):1600–

1611, Feb. 2007. ISSN 1053-8119. doi: 10.1016/j.neuroimage.2006.09.024. URL http:

//www.sciencedirect.com/science/article/pii/S1053811906009724.

M. J. Kahana, R. Sekuler, J. B. Caplan, M. Kirschen, and J. R. Madsen. Human theta

oscillations exhibit task dependence during virtual maze navigation. Nature, 399(6738):

781–784, June 1999. ISSN 1476-4687. doi: 10.1038/21645. URL https://www.nature.

com/articles/21645. Number: 6738 Publisher: Nature Publishing Group.

P. Kant, S. H. Laskar, J. Hazarika, and R. Mahamune. CWT Based Transfer Learning

for Motor Imagery Classification for Brain computer Interfaces. Journal of Neuroscience

Methods, 345:108886, Nov. 2020. ISSN 0165-0270. doi: 10.1016/j.jneumeth.2020.108886.

URL https://www.sciencedirect.com/science/article/pii/S0165027020303095.

D. Kaur, S. Uslu, K. J. Rittichier, and A. Durresi. Trustworthy Artificial Intelligence: A

Review. ACM Comput. Surv., 55(2), 2023. doi: 10.1145/3491209.

A. Kazemi, M. J. McKeown, and M. S. Mirian. Sleep staging using semi-unsupervised clus-

tering of EEG: Application to REM sleep behavior disorder. Biomedical Signal Processing

and Control, 75:103539, May 2022. ISSN 17468094. doi: 10.1016/j.bspc.2022.103539. URL

https://linkinghub.elsevier.com/retrieve/pii/S1746809422000611.

B. Kemp and J. Olivan. European data format ‘plus’ (EDF+), an EDF alike standard

format for the exchange of physiological data. Clinical Neurophysiology, 114(9):1755–1761,

Sept. 2003. ISSN 1388-2457. doi: 10.1016/S1388-2457(03)00123-8. URL https://www.

sciencedirect.com/science/article/pii/S1388245703001238.

100

https://www.sciencedirect.com/science/article/pii/S138824570400015X
http://www.sciencedirect.com/science/article/pii/S1053811906009724
http://www.sciencedirect.com/science/article/pii/S1053811906009724
https://www.nature.com/articles/21645
https://www.nature.com/articles/21645
https://www.sciencedirect.com/science/article/pii/S0165027020303095
https://linkinghub.elsevier.com/retrieve/pii/S1746809422000611
https://www.sciencedirect.com/science/article/pii/S1388245703001238
https://www.sciencedirect.com/science/article/pii/S1388245703001238


S. Khalid, T. Khalil, and S. Nasreen. A survey of feature selection and feature extraction

techniques in machine learning. In 2014 Science and Information Conference, pages 372–

378, Aug. 2014. doi: 10.1109/SAI.2014.6918213.

M. Kirby. Geometric Data Analysis: An Empirical Approach to Dimensionality Reduction

and the Study of Patterns. Wiley, 2001. ISBN 978-0-471-23929-1. URL https://books.

google.com.mx/books?id=nRmFQgAACAAJ.

D. J. Kupfer, F. G. Foster, P. Coble, R. J. McPartland, and R. F. Ulrich. The application

of EEG sleep for the differential diagnosis of affective disorders. The American Journal of

Psychiatry, 135(1):69–74, Jan. 1978. ISSN 0002-953X. doi: 10.1176/ajp.135.1.69.

V. J. Lawhern, A. J. Solon, N. R. Waytowich, S. M. Gordon, C. P. Hung, and B. J. Lance.

EEGNet: A compact convolutional neural network for EEG-based brain-computer interfa-

ces. Journal of Neural Engineering, 15(5), 2018. doi: 10.1088/1741-2552/aace8c.

Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436–444, 2015. doi:

10.1038/nature14539.

K. Lee, D. Liu, L. Perroud, R. Chavarriaga, and J. d. R. Millán. A brain-controlled exoske-

leton with cascaded event-related desynchronization classifiers. Special Issue on New Re-

search Frontiers for Intelligent Autonomous Systems, 90(Supplement C):15–23, Apr. 2017.

ISSN 0921-8890. doi: 10.1016/j.robot.2016.10.005. URL http://www.sciencedirect.

com/science/article/pii/S0921889016304948.

L. Lei, K. Liu, Y. Yang, A. Doubliez, X. Hu, Y. Xu, and Y. Zhou. Spatio-temporal analysis of

EEG features during consciousness recovery in patients with disorders of consciousness. Cli-

nical Neurophysiology, 133:135–144, Jan. 2022. ISSN 13882457. doi: 10.1016/j.clinph.2021.

08.027. URL https://linkinghub.elsevier.com/retrieve/pii/S1388245721007628.

R. Lent, F. C. Azevedo, C. Andrade-Moraes, and A. Pinto. How many neurons do you have?

Some dogmas of quantitative neuroscience under revision. Eur J Neurosci, 35(1):1–9, 2012.

doi: 10.1111/j.1460-9568.2011.07923.x.

K. M. Leung. Naive bayesian classifier. Polytechnic University Department of Computer

Science/Finance and Risk Engineering, 2007:123–156, 2007.

101

https://books.google.com.mx/books?id=nRmFQgAACAAJ
https://books.google.com.mx/books?id=nRmFQgAACAAJ
http://www.sciencedirect.com/science/article/pii/S0921889016304948
http://www.sciencedirect.com/science/article/pii/S0921889016304948
https://linkinghub.elsevier.com/retrieve/pii/S1388245721007628


J. Li, X. Du, and J. R. R. A. Martins. Machine learning in aerodynamic shape optimization.

Progress in Aerospace Sciences, 134:100849, Oct. 2022. ISSN 0376-0421. doi: 10.1016/

j.paerosci.2022.100849. URL https://www.sciencedirect.com/science/article/pii/

S0376042122000410.

Y. Liu, W. Su, Z. Li, G. Shi, X. Chu, Y. Kang, and W. Shang. Motor-Imagery-Based

Teleoperation of a Dual-Arm Robot Performing Manipulation Tasks. IEEE Transactions

on Cognitive and Developmental Systems, 11(3):414–424, Sept. 2019. ISSN 2379-8939.

doi: 10.1109/TCDS.2018.2875052. Conference Name: IEEE Transactions on Cognitive and

Developmental Systems.

F. Lotte, L. Bougrain, A. Cichocki, M. Clerc, M. Congedo, A. Rakotomamonjy, and F. Yger.

A review of classification algorithms for EEG-based brain-computer interfaces: A 10 year

update. Journal of Neural Engineering, 15(3), 2018. doi: 10.1088/1741-2552/aab2f2.
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