UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA

FACULTAD DE INGENIERÍA LICENCIATURA

EN BIOINGENIERÍA

Caracterización de los genes hsp70 y 18s en el cangrejo Cancer

antennarius.

TESIS

que para cubrir parcialmente los requisitos necesarios para obtener el grado de

LICENCIADO EN BIOINGENIERÍA

Presenta:

DIEGO IBARRA DURÁN

Ensenada, Baja California, México, Agosto del 2014.

Caracterización de los genes *HSP70* y 18S en el cangrejo *Cancer antennarius*

Resumen:

El cangrejo Cancer antennarius, denominado comúnmente como Cangrejo de roca o cangrejo de roca café es una especie que se distribuye desde San Francisco hasta las costas de Baja California, y es de gran importancia ecológica y pesquera. Al ser una especie con una amplia distribución y habitar en zonas intermareales, está constantemente expuesto a fluctuaciones de temperatura. Algunos de los estudios en organismos marinos han estado centrados en los efectos de la temperatura en la expresión de genes de las proteínas de choque térmico (HSP, por su denotación en inglés "heat shock protein"), encontrando ciertas relaciones temperatura-proteína, debido a que éstas son una familia de proteínas que se activan en diferentes tipos de estímulos en un organismo. Dentro de las HSP está la familia de las HSP70, las cuales son las HSP más relevantes en cuanto a factores de temperatura y se encuentran en un rango de aproximadamente 70Kda. Debido a esto, la expresión del gen hsp70 se ha utilizado para evaluar la respuesta de algunas especies de invertebrados marinos ante estrés térmico. El análisis de expresión, a través de la técnica de gPCR necesita de la utilización de un gen de referencia, donde en algunos casos se utilizan genes ribosomales como el 18s. Sin embargo, la falta de información sobre las secuencias de los genes en esta especie limita este tipo de análisis. Por lo que en este trabajo se caracterizó el gen 18s, el cual es un gen que se expresa de manera constitutiva y puede ser utilizado como gen de referencia. Adicional a esto, se utilizó este gen para comparar con otras secuencias de especies cercanas de crustáceos; observando que quardan una relación cercana con organismos del género cancer. En el caso del gen hsp70 se consiguió amplificar un fragmento usando primers diseñados en regiones conservadas a partir de una secuencia consenso obtenida a partir de secuencias de otras especies de crustáceos. Sin embargo, la secuencia obtenida a partir de los fragmentos amplificados con este gen no mostró similitud con otras secuencias de hsp70, por lo que se recomienda realizar un análisis exhaustivo de estas secuencias, así como probar otros pares de primers diseñados.

UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA

FACULTAD DE INGENIERÍA, ARQUITECTURA Y DISEÑO

EN BIOINGENIERÍA

Caracterización de los genes hsp70 y 18s en el cangrejo Cancer

antennarius.

TESIS

que para cubrir parcialmente los requisitos necesarios para obtener el grado de

LICENCIADO EN BIOINGENIERÍA

Presenta:

DIEGO IBARRA DURÁN

Aprobada por:

Dra. Clara E. Galindo Sanchez

Director de tesis

Lafarga de la Cruz Fabiola

Sinodal

Dra-Graciela Guerra Rivas

Sinodal

Agradecimientos:

A la Dra. Clara E. Galindo Sánchez por su tiempo, dedicación y apoyo a este proyecto, por su paciencia y por enseñarme tantas cosas.

A los miembros del comité: Dra. Fabiola Lafarga de la Cruz y la Dra. Graciela Guerra Rivas por su tiempo, dedicación apoyo y aportaciones en este proyecto.

A mis compañeros de laboratorio, que me enseñaron tantas cosas y me apoyaron en las diferentes etapas de este trabajo, haciéndolo una experiencia placentera.

A mis padres, que brindaron todo su apoyo a lo largo del proyecto para que fuera posible.

Índice

1. INTRODUCCIÓN:	10
1.1 Tolerancia térmica de <i>Cancer antennarius</i>	13
1.2 Proteínas de choque térmico (HSP) y el gen constitutivo 18s	14
1.3 Extracción de ácidos nucleicos	21
1.4 Técnica de PCR	22
2. HIPÓTESIS:	25
3. OBJETIVOS:	26
4. METODOLOGÍA:	27
4.1 Experimento de aclimatación y obtención de muestras	27
4.2 Extracción de DNA y eliminación de RNA con RNAsas. (Anexo 1 y 2)	29
4.3 Extracción de RNA y eliminación de DNA con DNAsas. (Anexo 3 y 4)	30
4.4 cDNA por trancriptasa reversa (Anexo 6)	30
4.5 Búsqueda de secuencias y diseño de primers degenerados y específico	s 31
4.6 Amplificación del fragmento de <i>hsp70</i> y 18s en DNA y cDNA a partir de los primers diseñados	32
4.7 Secuenciación, alineamiento y análisis de las secuencias obtenidas	33
5. RESULTADOS:	34
5.1 Muestreo, extracción de RNA y DNA	34
5.2 Extracción de DNA y eliminación de RNA con RNAsa	35
5.3 Extracción de RNA	37
5.4 Tratamiento con DNasas y cDNA por trancriptasa reversa	39
5.5 Diseño bioinformático de primers para PCR punto final	41
5.6 Amplificación de genes 18s y hsp70 por PCR punto final	47
5.7 Secuenciación y diseño de <i>primer</i> s específicos	57
6. DISCUSIONES:	61
6.1 Colecta de tejido y extracciones de DNA y RNA.	61
6.2 Diseño de primers y amplificación por PCR punto final	64
6.3 Secuenciación	67

6.4 Análisis de la secuencia obtenida	68
7. CONCLUSIONES:	71
8. RECOMENDACIONES:	72
9. REFERENCIAS:	73
10. ANEXOS:	83
ANEXO 1. Extracción de DNA	83
ANEXO 2. Electroforesis en geles de agarosa	84
ANEXO 3. Homogenización	86
ANEXO 4. Extracción de RNA	87
ANEXO 5. Tratamiento con DNAsa:	89
ANEXO 6. cDNA:	91
ANEXO 7. Información completa de <i>primers</i> realizados	92
ANEXO 8. PCR punto final	94
ANEXO 9. Tabla de muestreo de Cancer antennarius	
ANEXO 10. Tabla de extracción de músculo y branquia de <i>Cancer</i> antennarius	
ANEXO 11. Secuencia obtenida del gen 18S después de la secuenciació	ວ່ກ 100
ANEXO 12. Alineamiento completo de las secuencias del gen 18S	101
ANEXO 13. Alineamiento completo de las secuencias del gen HSP70	106
ANEXO 14. Soluciones utilizadas que se prepararon	113

VI

Lista de Figuras

- Figura 1.0. Distribución del cangrejo de roca café (Brown rock crab) (Carrol, 1989).....11
- Figura 1.1. Cancer antennarius. Orden: Decápodo. Género: Cancer. (Imagen tomada de Oregon Department of Fish and Wildlife.
 - (http://www.dfw.state.or.us/mrp/shellfish/crab/images/cancer-antennarius_ODFW.jpg)13
- **Figura 1.2.** Señales fisiológicas que activan la expresión de la proteína HSP70. Esta proteína es regulada por un complejo llamado HSF, el cual a su vez es inhibido por HSP, a mayor cantidad de proteína HSP70, mayor es la inhibición de esta complejo, al haber un factor estresante o estímulo, el complejo HSF se separa de la proteína HSP, sufre una fosforilación, después se trimeriza y se una al elemento HSE que se encuentra cerca del promotor del gen HSP 70, funcionando como un activador de la transcripción para esta proteína, una vez que es producida la proteína puede ayudar en el doblamiento y redoblamiento de otras proteínas (Kregel, 2002).

- Figura 2.1. Extracción RNA con Trizol y cloroformo para muestras de branquia y músculo de *Cancer antennarius* (Gel de Agarosa al 1.5% TAE 1x). Carril 1: muestra 1 (1B25) de branquia, 2: muestra 2 (10M25) músculo, 3: muestra 3 (3M16) de músculo, 4: muestra 4 (12B16) de branquia, 5: muestra 5 (2B22) de branquia, Carril 6: muestra 6 (16M22) de músculo, 7: muestra 7 (14M19) de músculo, 8: muestra 8 (15B19) de branquia, 9: muestra 9 (control) de branquia, 10: muestra 10 (control) de branquia.

Figura 2.4. Programa MEGA, utilizado para alineamiento de secuencias, a la izquierda muestra
el nombre de la especie con su clave asignada por NCBI y en la parte derecha se tiene la
secuencia de nucleótidos (a partir de RNAm en el caso de <i>hsp70</i>). De las secuencias
alineadas se llegó a una secuencia consenso, a partir de la cual se diseñaron primers
degenerados, así como primers específicos en las zonas más conservadas (alineamiento
completo de secuencias Anexo 13)44
Figura 2.5. Programa PerlPrimer en el cual podemos ver las fuerzas de atracción entre los
primers y por ende la fuerza de las estructuras secundarias que se pueden llegar a formar,
como son los dímeros, otros datos importantes que se ven en el programa es la Tm ("Melting
temperature" que se refiere a la temperatura de fusión de los primers), el porcentaje de
guaninas y citosinas y el tamaño de los primers45
Figura 2.6. Gel de producto de PCR con gradiente de temperatura de 50°C a 60°C de primers
de 18s en DNA genómico (Agarosa 1% TAE 1x)49
Figura 2.7. Gel con escalera y banda supuesta de 18s para amplificación en DNA genómico
(Agarosa 2% TAE 1x) Carril 1: Escalera de 50 pb, Carril 2: producto de PCR50
Figura 2.8. Gel TBE agarosa al 1.5% corrido por 30 min. Carril 1-4: Producto de PCR de 50°C
a partir de 2 µl de cDNA (sin diluir), Carril 5-6: controles positivos de producto de PCR de
50°C a partir de DNA, Carril 8: control negativo51
Figura 2.9. Gel TBE agarosa al 1.5% corrido por 30 min. Carril 1-2: Producto de PCR a partir de
2 µl de cDNA de branquia (EB5) sin diluir con primers de 18s, Carril 3: control positivo de
producto de DNA con primers para 18s, Carril 4: control negativo51
Figura 2.10. Gel de producto de PCR de 50°C con DNA genómico y primers de hsp70 (Agarosa
con TBE 1.5% 80V corrido por 20 minutos). Carril 1-2: Muestra de producto de DNA diluido
1/10, Carril 3: control negativo y Carril 5: control positivo de erizo con un tamaño conocido de
700pb53
Figura 2.11. Gel de agarosa 1.5% con TBE 0.5x, corrida: 25 min, 80 V. Producto de PCR con
primers de hsp70 para purificación de bandas54
Figura 2.12. Gel agarosa 1.5%, TBE 0.5x, corrido: 95 V, 55 min. Bandas purificadas, carril 1:
producto de 500 pb, carril 2: producto de 400 pb y carril 3: producto de 900pb
aproximadamente54
Figura 2.13. Gel de producto de PCR de 50°C de primers de hsp70 con cDNA (Agarosa 1.5%
TBE 80V por 20 min.). Carril 1: Escalera de 100pb, Carril 3-4: Muestra de cDNA de músculo.
55
Figura 2.14. Geles de agarosa 1.5% con TBE 0.5x, corridos por 80 min. Gel de abulones: carril
1-2 (R)– Abulón Rojo, carril 3-4 (N) - Abulón Negro, carril 5-6 (Am) – Abulón Amarillo, carril
7-8 (Az) – Abulón Azul, carril 9-10 (V) – Abulón verde japonés, carril 11-12 (RV) – Abulón
híbrido, carril 13-14 (VR) – Abulón híbrido y carril 15-16 (H) – hibridos CMSC. Gel de
organismos varios: AR – Abulón Rojo, AN – Abulón Negro, Aam – Abulón Amarillo, AAz –
Abulón Azul, AV – Abulón verde japonés, RV – Abulón híbrido, VR – Abulón híbrido, Pep –
Pepino de mar, Nud – Nudibranquio, Car – Caracol, Alm – Almeja, Pul – Pulpo, Cam –
Camarón blanco y Lap – Lapa56
Figura 2.15. Cromatograma visto con el programa Chromas 2.4 de la secuencia obtenida con
amplificación a partir de DNA genómico con primers diseñados para el gen 18s57
Figura 2.16. Arbol filogenético con gen 18s realizado con el método de máxima verosimilitud
en algunas especies de crustáceos59

Lista de Tablas

Tabla 1.0. Número de organismos, temperatura de aclimatación, sexo, experimental y control.	
	34
Tabla 1.1. Número de muestras utilizadas para la extracción, temperaturas iniciales de	
aclimatación, cantidad de muestras por tejido, pureza de la muestra y cantidad de RNA	37
Tabla 1.2. Genes de interés (gen de referencia 18S y gen blanco HSP 70)	41
Tabla 1.3. Especies utilizadas en alineamiento de secuencias del gen 18S y su número de	
acceso a la base de datos de NCBI	42
Tabla 1.4. Especies utilizadas en alineamiento de secuencias del gen HSP70.	43
Tabla 1.5. Gen al cual pertenece el par de primers, secuencia, tamaño y tamaño de amplicón.4	46
Tabla 1.6. Concentración de reactivos inicial para la estandarización del gen 18S. Máster mix	
para una muestra de un volumen final de 25 µl	47
Tabla 1.8. Los organismos con secuencias de 18S más cercanas a la obtenida.	58

1. INTRODUCCIÓN:

Los factores ambientales y su efecto sobre las especies han sido estudiados desde diferentes enfoques. Uno de los factores más estudiados ha sido la temperatura, intentando comprender las diferentes respuestas como son la sensibilidad térmica, los límites de tolerancia de diferentes organismos o poblaciones y los mecanismos moleculares involucrados en estos procesos (Somero, 1995).

Una gran cantidad de organismos marinos, especialmente los crustáceos, comparten la característica de ser poiquilotermos, es decir animales que no regulan su temperatura interna. Su temperatura corporal varía según la temperatura del ambiente y por ello, este es un factor determinante para su desarrollo y supervivencia; y por lo tanto, los organismos poiquilotermos deben tener mecanismos de control contra estos cambios en la temperatura (Martínez *et al.*, 2009).

El cangrejo *Cancer antennarius* (Fig. 1.1), denominado comúnmente como Cangrejo de roca o cangrejo de roca café es una especie que se distribuye desde San Francisco hasta las costas de Baja California (Fig. 1.0) (Carrol, 1989), y es de gran importancia ecológica y pesquera. En México, la pesquería de cangrejos incluye diversas especies y asciende a 450 ton/año El cangrejo *Cancer antennarius*, en terminos de importancia pesquera, esta especie representa el 17% de la producción nacional (SAGARPA, 2004).

Figura 1.0. Distribución del cangrejo de roca café (Brown rock crab) (Carrol, 1989).

Esta especie habita generalmente entre las rocas, en las zonas de marea baja, siendo de los cangrejos más comunes en esta área (Carvacho y Bonfil, 1988). Esta característica lo hace particularmente interesante, ya que se encuentra expuesto constantemente a cambios de temperatura, sin embargo se sabe poco de sus mecanismos de adaptación y respuesta a estas variaciones ambientales. A pesar de que se sabe poco sobre los mecanismos de adaptación y las respuestas a estas variaciones ambientales, algunos estudios mencionan que una de las respuestas más importantes a cambios en la temperatura ambiental es la adaptación homeoviscosa, esta tiene que ver con el mantenimiento de la fluidez constante en la membrana celular, esto es posible gracias a la composición química de los ácidos grasos (Cuculescu *et al.*, 1995).

Este mecanismo funciona aumentando el nivel de ácidos grasos insaturados cuando hay temperatura baja, ya que hacen más difícil que la membrana celular se congele debido a que tienen dobles enlaces entre carbonos y aumentando el nivel de ácidos grasos saturados en temperaturas más altas, ya que están mejor empacados y toma más energía o mayor temperatura para romperlos debido a que tiene enlaces simples entre carbonos los cuales facilitan la unión entre moléculas del mismo tipo) (Hill *et al*, 2004).

El desarrollo de esta especie consta de 4 etapas: huevo, larva, juvenil y adulto. La etapa de reproducción se da generalmente en primavera y otoño, después de la temporada de apareamiento, aproximadamente en 11 semanas los huevos son fertilizados internamente a medida que se extruyen, siendo transportados por la hembras, son necesarias alrededor de 7-8 semanas de desarrollo e incubación de los huevos a temperaturas entre 10-18°C. Después de estas 7-8 semanas, la larva sale del huevo. Las larvas tienen varias etapas de desarrollo las cuales duran entre 33 y 45 días a temperaturas de 22 y 18°C respectivamente finalmente alcanzando la etapa juvenil (Carrol, 1989). El tiempo de vida aproximado de este tipo de cangrejos es de 6 años y su madurez reproductiva es alcanzada en aproximadamente a los 2 años. Las hembras se reproducen entre 2 y 3 veces en toda su vida (Tristán *et al.*, 1992).

Figura 1.1. *Cancer antennarius*. Orden: Decápodo. Género: Cancer. (Imagen tomada de Oregon Department of Fish and Wildlife. (http://www.dfw.state.or.us/mrp/shellfish/crab/images/cancer-antennarius_ODFW.jpg)

1.1 Tolerancia térmica de Cancer antennarius

Un estudio en *Cancer antennarius* demostró que la temperatura preferente del organismo es 16°C y que la temperatura critica máxima (TCMax; término referido para la temperatura a la cual un individuo pierde control de su locomoción y se acerca a la muerte del mismo) varió de 31.5°C, 31.8°C, 32.7°C y 32.8°C, aclimatados a 15±1°C, 18±1°C, 21±1°C y 24±1°C respectivamente, lo cual nos dice que el organismo desarrolla cierta tolerancia al estrés térmico si se aclimata a temperaturas más altas (Padilla, 2014). Otros trabajos realizados en especies cercanas mencionan que individuos como *Cancer pagurus*, capturados en verano, tiene una TCMax de 25.1 y 31.5°C al ser aclimatados a

temperaturas de 8 y 22°C, respectivamente (Cuculescu *et al.*, 1998). Estos resultados concuerdan con las observaciones de Padilla (2014) en que la temperatura de aclimatación tiene un efecto significativo en los valores de TCMax. Por su parte, el cangrejo *Pachygrapsus marmoratus* tiene una TCMax de 36°C aproximadamente en cangrejos adultos aclimatados a 24°C (Madeira *et al.*, 2012). La mayoría de este tipo de trabajos llega a la conclusión de que la TCMax varía dependiendo del sexo, tamaño, edad y habitat del organismo, por lo que es de gran importancia realizar estudios de manera intraespecífica.

1.2 Proteínas de choque térmico (HSP) y el gen constitutivo 18s

Algunos de los estudios en organismos marinos han estado centrados en los efectos de la temperatura en la expresión de genes de las proteínas de choque térmico (HSP, por su denotación en inglés "*heat shock protein*"), encontrando ciertas relaciones temperatura-proteína, debido a que éstas son una familia de proteínas que se activan en diferentes tipos de estímulos en un organismo (Somero, 1995).

Estas proteínas actúan como chaperonas moleculares involucradas en la supervivencia y protección de la célula contra estímulos potencialmente dañinos, teniendo efectos complejos en la respuesta fisiológica del organismo (Alexzander, 2007).

Las HSP tienen un alto nivel de conservación en los organismos, lo cual sugiere que son proteínas muy importantes en los procesos celulares. Estas fueron descubiertas en larvas de *Drosophila melanogaster* expuestas a incrementos en la temperatura ambiental, y con estudios subsecuentes se han encontrado una gran variedad de HSP, algunas de estas son:

- HSP27 que se han encontrado en el citosol y en el núcleo de la célula, las cuales se ha visto que ayudan en la estabilización de microfilamentos y tienen funciones anti-apoptosis (Kregel, 2002).
- HSP60 que se encuentran en la mitocondria, tienen participación redoblando proteínas y previniendo que se agreguen proteínas desnaturalizadas y con funciones pro-apoptosis (Kregel, 2002).
- Familia de HSP70: HSP72, HSP73, HSP75 y HSP78 que se encuentran en el citosol, núcleo, mitocondria y retículo endoplásmico respectivamente con funciones de citoprotección, doblamiento de proteínas, y su función más importante, como chaperonas moleculares (Fig. 1.2) (Kregel, 2002).

Señales fisiológicas que activan la expresión de HSP 70

Figura 1.2. Señales fisiológicas que activan la expresión de la proteína HSP70. Esta proteína es regulada por un factor de transcripción de choque térmico (HSF), el cual a su vez es inhibido por HSP. A mayor cantidad de proteína HSP70, mayor es la inhibición de esta complejo. Al haber un factor estresante o estímulo, el complejo HSF se separa de la proteína HSP y sufre una fosforilación, después se trimeriza y entra al núcleo donde se une a los elementos de choque térmico (HSE) que se encuentra cerca del promotor del gen *hsp70*, funcionando como un activador de la transcripción para esta proteína. Una vez que es producida la proteína puede ayudar en el doblamiento y redoblamiento de otras proteínas (Kregel, 2002).

Dentro de las HSP está la familia de las HSP70, las cuales son las HSP más relevantes en cuanto a factores de temperatura y se encuentran en un rango de peso molecular de aproximadamente 70 Kda. El gen de la *hsp70* tiene un tamaño de 2,440 pares de bases (pb), con una secuencia líder de 212 pb y una región 3' sin traducir de 240 pb (Kregel, 2002). En referencia a la estructura del ARNm de hsp70, la secuencia del ADNc muestra un tamaño total de aproximadamente 2500 pb, conteniendo un marco abierto de lectura (ORF) de alrededor de 1950 pb, el cual se traduce en una proteína de 650 aminoácidos

aproximadamente; además en la secuencia total del ADNc existen regiones no traducidas (UTR) en ambos extremos: una región UTR-5' terminal de menos de 100 pb y una región UTR-3' terminal de entre 300 pb y 500 pb según la especie. La región UTR-3' contiene una secuencia señal de poliadenilación AATAAA y una cola poli-A (Laursen et al. 1997, Cellura et al. 2006, Cheng et al. 2007, Farcy et al. 2007). Se han encontrado que diferentes estímulos inducen la transcripción de esta familia de proteínas, el primer estímulo con el que se asoció fue la hipertermia, después se encontró que las HSP70 estaban asociadas con el desarrollo a tolerancia a ese y otros estímulos, como son hipoxia, isquemia, acidosis y la falta de energía (Kregel, 2002).

Estudios indican que hay genes de la familia *hsp70* que se expresan de manera constitutiva y genes que tienen expresión inducida, es decir, que se induce su expresión cuando aumenta repentinamente la cantidad de polipéptidos denaturados en el citosol o en el núcleo (Tutar *et al.,* 2005).

También se ha encontrado que la expresión de este gen está regulada por el factor de transcripción de choque térmico (HSF1), el cual a su vez es inhibido por diferentes HSP, por esto al haber un nivel alto de HSP70 que no está unida a proteínas desnaturalizadas el factor HSF1 es inhibido y la expresión del gen *hsp70* disminuye significativamente. Esto es porque el HSF1 funciona como un "potenciador" (enhancer) en la transcripción del gen de *hsp70*, el cual cumple su función durante el estrés térmico ya que las HSP se disocian del mismo, dejándolo entrar al núcleo de la célula (Tomanek y Somero 2002).

Se ha estudiado el gen *hsp70* y la expresión del mismo en diferentes ambientes con temperaturas específicas para poder entender cómo y por qué se da la expresión de este gen, ya que naturalmente muchos organismos son sometidos a estímulos térmicos debido a las constantes fluctuaciones en la temperatura del medio ambiente. Este tipo de trabajos se han realizado para varios organismos marinos como Pachygrapsus marmoratus, Nacella concinna, Tegula montereyi, Tegula brunnea, Tegula funebralis, Mytilus galloprovincialis, Limulus polyphemus y otros organismos más (Tomanek y Zuzow 2010; Tomanek y Somero 2002; Botton et al., 2006; Madeira et al., 2012; Clark et al., 2008a). En diferentes estudios se ha observado que la respuesta a incrementos en la temperatura es diferente dependiendo de la madurez, sexo, tamaño, edad y habitat del organismo (Madeira et al., 2012). Por otra parte, las HSP no sólo se expresan cuando hay cambios de temperatura si no que hay otros factores ambientales que pueden inducir su expresión. Por ejemplo, hablando de un hábitat natural, factores tales como los ciclos de marea, deshidratación, disponibilidad de oxígeno, humedad, radiación ultravioleta ó salinidad, pueden hacer que un organismo en un hábitat natural produzca más HSP que en un hábitat artificial donde los factores de estrés son menores (Clark et al., 2008b). Por lo que, para conocer el estado fisiológico de un organismo es importante determinar los niveles de expresión de HSP cuando no hay ningún factor estresante, de manera que se pueda hacer una comparación de expresión diferencial entre condiciones (Tomanek y Somero, 2002).

Para analizar la expresión del gen hsp70, se utiliza la técnica de PCR cuantitativo (qPCR), la cual consiste en cuantificar la expresión relativa de un gen blanco (hsp70) con respecto un gen de referencia usado como control interno (housekeeping). Un gen de referencia perfecto es uno que no exhibe cambios en la expresión entre muestras de varias condiciones experimentales o de diferentes tiempos o entre diferentes tejidos en un organismo (Taylor et al., 2010). Por esta razón, es común la elección de un gen constitutivo (Paolacci et al., 2009). Este tipo de genes comúnmente son requeridos para el correcto funcionamiento y mantenimiento de las funciones celulares, así como para procesos metabólicos (Eisenberg y Levanon, 2013). El gen 18s es considerado un gen constitutivo, dado que es un gen ribosomal que está involucrado en la síntesis de proteínas durante los procesos transcripcionales (Aursnes et al., 2011). La molécula 18S del RNA ribosomal (RNAr) es una parte esencial de la subunidad ribosomal pequeña 40S, que en conjunto con la subunidad ribosomal grande 60S (la cual contiene otras moléculas de RNAr como la 28S y 5S) forman al ribosoma 80S. Este es el complejo RNA-proteina más abundante en la célula y más importante en cuanto a la síntesis de proteínas (Fig. 1.3) (Lodish *et al.*, 2004).

Figura 1.3. Ribosoma compuesto de dos subunidades, la subunidad grande 60S y la pequeña 40S. El RNAr (rojo) más las proteinas que cada subunidad contiene (conteniendo al RNAr 18S la subunidad pequeña 40S) (Lodish *et al.*, 2004).

Además, es RNA estructural en eucariotas por lo que su secuencia es muy conservada en organismos cercanos y es muy utilizado en análisis de filogenia (Meyer *et al.*, 2010). Hay otros factores que lo hacen un gen candidato para estudios de filogenia como es el hecho de que el gen este secuenciado en una gran cantidad de organismos, lo cual nos provee de una gran base de datos al hacer análisis comparativos entre secuencias, también esta molécula posee regiones variables informativas las cuales son muy útiles para determinar relaciones entre especies (Habibi, 2012).

Actualmente no existen ningún trabajo que evalúe la respuesta a nivel transcriptómico respecto a la tolerancia térmica en *Cancer antennarius*, y como se mencionó anteriormente, la expresión del gen *hsp70* puede ser un buen indicador de tolerancia al incremento en la temperatura. Por esta razón, este estudio plantea la caracterización de los genes *hsp70* y *18s* (como gen de referencia) en el cangrejo *Cancer antennarius*, para que posteriormente se

puedan realizar estudios de expresión génica con el fin investigar cómo afecta a los organismos de esta especie el estrés ambiental relacionado con cambios en la temperatura del ambiente marino.

1.3 Extracción de ácidos nucleicos

La extracción de ácidos nucléicos (AN) es un proceso mediante el cual se puede obtener ya sea DNA o RNA dependiendo del tipo de extracción que se desea realizar, teniendo generalmente ciertos pasos básicos como son la lisis celular, la cual destruye la estructura celular (muchas veces acompañada de homogenización mecánica), inactivación de nucleasas como son las RNAsas y DNasas con reactivos como el EDTA y el tiocianato de guanidina) y separación de los AN deseados de la derbis celular y otros componentes como proteínas (comúnmente usando fenol y cloroformo para llevar a cabo la separación de fases). Posteriormente hay un paso de purificación y lavado en el cual generalmente se usa etanol o isopropanol, primeramente para precipitar el DNA o RNA y quitar el sobrenadante (únicamente queda un pellet de DNA o RNA con un poco de sales) y finalmente sigue lavar el pellet con etanol o isopropanol (al 70% generalmente) para eliminar los residuos de sales y otros componentes que puedan estar en la muestra y tener el DNA/RNA lo más puro posible, tratando de no degradar o dañar los AN en el proceso Al terminar el lavado generalmente se resuspenden los AN en TE (solución de EDTA y buffer para mantener pH) o agua libre de nucleasas (Tan y Yiap, 2009).

Las bases nitrogenadas de los ácidos nucleicos tienen una absorbancia alrededor de los 260 nm, estas moléculas contribuyen a la absorbancia total de la muestra. La razón de absorbancia 260/280 nm es utilizada para determinar la pureza del DNA y RNA en la muestra, los números óptimos para esta relación son 1.8 para DNA y 2.0 para RNA (con rangos aceptables de 1.7-2.2). Un rango menor en esta relación puede indicar la presencia de proteínas u otros contaminantes en la muestra. La cuantificación generalmente es dada en nanogramos por microlitro de ácidos nucleicos, y tiene la ventaja de que sólo es necesario cuantificar entre 1 y 2 µl de la muestra (Thermo Scientific, 2012).

1.4 Técnica de PCR

Para poder aislar los genes de interés, en este trabajo se utilizará la técnica de la reacción en cadena de la polimerasa (PCR por sus siglas en inglés *Polymerase Chain Reaction*). La PCR es una técnica de biología molecular usada para amplificar una copia o varias copias de una doble hebra de DNA generando de miles a millones de copias de esta secuencia particular de DNA (Fig. 1.4). Este proceso funciona a base del copiado de cadenas, duplicando el número de las mismas en cada ciclo de reacción. Este continuo duplicado de cadenas es logrado por enzimas específicas llamadas polimerasas, las cuales son capaces de pegar nucleótidos formando cadenas de DNA a partir de la primera cadena o cadenas proporcionadas. Hay tres pasos básicos involucrados en la técnica de PCR (Joshi *et al.*, 2010):

- Desnaturalización. Se necesita desnaturalizar la doble cadena de DNA para que los *primers* puedan pegarse a la cadena, esta separación o desnaturalización sucede aproximadamente a 90°C.
- Alineamiento. En este paso los primers se alinean a las cadenas de DNA para su posterior extensión, la temperatura a la cual se lleva a cabo este paso varía dependiendo del diseño de los primers utilizados (50-60°C).
- Extensión. La extensión comienza al final del primer alineado con la cadena templado de DNA para crear una copia complementaria de DNA a una temperatura aproximada de 72°C doblando la cantidad de DNA al finalizar este paso.

Figura 1.4. Pasos que componen la técnica de PCR, desnaturalización inicial para separación de la doble cadena de DNA, después sigue el alineamiento (A) de *primers* y DNA, para pasar posteriormente a la elongación (E) que es donde sucede la extensión de la cadena nueva, volviendo a subir la temperatura para llegar de nuevo a la desnaturalización (D), repitiendo normalmente este procedimiento entre 30 y 35 veces (Joshi *et al.*, 2010).

Los componentes esenciales para un PCR son, una DNA polimerasa termoestable, un par de oligonucleótidos (*primers*) para comenzar la síntesis de DNA, dNTPs (desoxinucleótido trifosfato) para que la polimerasa pueda construir la nueva cadena, cloruro de magnesio que funciona como cofactor de la polimerasa (agilizando la reacción de polimerización), buffer para mantener el pH y el DNA templado (molde) a partir del cual se realizarán las copias iniciales de DNA (Sambrook *et al.*, 2001)

2. HIPÓTESIS:

Dado que las secuencias de los genes *hsp70* y *18s* son altamente conservadas entre taxas, las secuencias de estos genes en el cangrejo *Cancer antennarius* presentarán alta similitud con secuencias reportadas para otras especies filogenéticamente cercanas.

3. OBJETIVOS:

Objetivo General

Caracterizar los genes *hsp70* y *18s* a partir de tejido de branquia y músculo en *Cancer antennarius*.

Objetivos particulares

- Estandarizar los protocolos de extracción de RNA y DNA, a partir de muestras de diferentes tejidos preservadas en RNAlater y etanol, en *C. antennarius.*
- Diseñar primers degenerados y específicos para la obtención de secuencias parciales de los genes hsp70 y 18s en C. antennarius.
- Estandarizar la técnica de PCR punto final, a partir de DNA y cDNA, para la amplificación de los genes *hsp70* y *18s* en *C. antennarius*
- Caracterizar los genes *hsp70* y *18s* a partir de tejido de branquia y músculo de *C. antennarius*.

4. METODOLOGÍA:

4.1 Experimento de aclimatación y obtención de muestras.

Los organismos con los que se trabajó fueron obtenidos en la zona intermareal del Ejido Eréndira que se ubica a 80 km al sur de la ciudad de Ensenada, Baja California. El bioensayo realizado con estos organismos (como parte de otro proyecto) comenzó con la aclimatación de aproximadamente 92 cangrejos separados en cuatro grupos de entre 21 y 24 cangrejos. Teniendo cada uno de estos grupos una temperatura correspondiente de aclimatación (15, 18, 21 y 24°C) con un desfase de dos días por grupo hasta cumplir 21 días de aclimatación. Una vez cumplidos los 21 días se realizó el experimento de TCMax (Temperatura crítica máxima) para el cual se utilizaron entre 10 y 12 organismos por temperatura, a estos organismos no se les proporcionó alimento en las 24 horas previas al experimento. Los organismos se colocaron en acuarios de vidrio, a los cuales se les aumentó la temperatura 1°C cada dos minutos para asegurar que la temperatura del organismo fuera igual a la del medio. Como indicador para la TCMax se observó el incremento de actividad, espasmos musculares y la pérdida del equilibrio en los organismos. Las temperaturas aproximadas por grupo de aclimatación a las que los cangrejos fueron expuestos en este experimento fueron31.5, 31.8, 32.7 y 32.8°C respectivamente de temperatura más baja de aclimatación a temperatura más alta (Padilla, 2014), siendo este experimento un factor importante para este proyecto ya que se espera que haya mayor cantidad de transcritos del gen *hsp70* como respuesta del organismo al estrés térmico experimentado. Una vez finalizado el experimento de TCMax se realizó la disección del organismo y se tomaron muestras de músculo y branquia que fueron almacenadas en RNAlater (solución de EDTA, citrato de sodio y sulfato de amonio) a -80°C para su posterior análisis molecular.

Las claves utilizadas para el almacenado de tejido, así como para conocer de qué organismo provenían las extracciones de RNA y DNA fue la siguiente:

Para muestras experimentales:

Ejemplo: 5B19

Donde el número cinco representa el orden en el que los organismos fueron muestreados, la letra B, que puede ser B o M representa branquia o músculo con su respectiva inicial y finalmente los últimos dos números que representan la temperatura de aclimatación del organismo, que en este ejemplo son 19° centígrados.

Se realizó un segundo muestreo con el objetivo de obtener la mayor cantidad de tejido posible para la estandarización de las técnicas de extracción de ácidos nucleicos y la técnica de PCR punto final, estos organismos no llevaron un proceso de aclimatación, ya que se realizó el muestreo el día siguiente de haber llegado al laboratorio. Estos organismos provenían también del Ejido Eréndira y su tejido de branquia y músculo fue almacenado de la misma manera (unas muestras en RNAlatter y otras en etanol) a -80°C.

Las claves utilizadas para el almacenado de tejido, así como para conocer de qué organismo provenían las extracciones de RNA y DNA fue la siguiente:

Para muestras no experimentales:

Ejemplo: EB14

Donde la letra E significa si fue almacenado en etanol, aquí puede ser R o E si es RNAlatter o etanol respectivamente, la letra B, que puede ser B o M representa branquia o músculo con su respectiva inicial y finalmente los últimos dos números son orden de muestreo para el organismo.

4.2 Extracción de DNA y eliminación de RNA con RNAsas. (Anexo 1 y 2)

En este trabajo se homogenizaron entre 30-40 mg de tejido de cada muestra utilizando tubos eppendorff con la ayuda de pistilos y solución SNET (solución con SDS y EDTA) por 15 min para la homogenización mecánica y posteriormente 2 hr con proteinasa K para la homogenización química. La extracción se llevó a cabo con el protocolo mostrado en anexos, haciendo una prueba de extracción con sales y otra con fenol cloroformo, sin hacer algún otro cambio en el protocolo (Anexo 1). Posteriormente se cuantificó el DNA utilizando un espectofotómetro (Nanodrop) y se identificó su integridad por medio de electroforesis. Se verificó la calidad del DNA utilizando un gel de agarosa al 1% con buffer TAE (solución de Tris-acetato y EDTA) el cual fue visualizado mediante tinción con GelRed[™] de Biotium (Masek *et al.,* 2005) (Anexo 2).

4.3 Extracción de RNA y eliminación de DNA con DNAsas. (Anexo 3 y 4)

Se homogenizaron entre 50-100 mg de tejido de cada muestra utilizando tubos Eppendorff con la ayuda de perlitas de Zirconia/Silica 1 mm (BIOSPEC), y con un homogenizador de tejido (Anexo 3). La extracción de RNA se llevó a cabo con el protocolo de *Ambion*[®]: *RNA/DNA/Protein Isolation Reagent* con algunas modificaciones (Anexo 4). Se cuantificó el RNA utilizando un espectofotómetro (Nanodrop) y se verificó su integridad por medio de electroforesis en un gel de agarosa al 1.5% con TAE (solución de Tris-acetato y EDTA) que fue visualizado en fotodocumentador con luz UV previa tinción con GelRed[™] de Biotium (Masek *et al., 2*005) (Anexo 2). Para eliminar el DNA residual se utilizó el protocolo de RQ1 RNase-Free DNase de PROMEGA (Anexo 5).

4.4 cDNA por trancriptasa reversa (Anexo 6)

Se llevó a cabo la síntesis de cDNA utilizando Improm II Transcriptasa Reversa (PROMEGA), siguiendo las instrucciones del manual del reactivo. Se utilizaron primers de oligo dT (desoxitimidina) para asegurar que el total de RNAm sea transcrito. Una vez sintetizado el cDNA fue almacenado a -20°C hasta su uso.

4.5 Búsqueda de secuencias y diseño de *primers* degenerados y específicos

Se llevó a cabo una búsqueda de secuencias nucleotídicas homólogas de los genes *hsp70* y *18s* de invertebrados filogenéticamente cercanos en la base de datos de GENBANK (http://www.ncbi.nlm.nih.gov), a través de BLAST. Las secuencias obtenidas fueron alineadas utilizando el programa MEGA 5.1 (Tamura *et al.*, 2011). Una vez realizado el alineamiento múltiple, fueron identificadas las regiones más conservadas entre las secuencias. Para el diseño de *primers* sse usaron como base los siguientes parámetros:

- 1. Cada *primer* individual debe contar con una longitud de 18-24 bases.
- Se debe mantener un contenido de G:C (guanina-citosina) entre 40 y 60%.
- Los dos *primers* deben tener una temperatura de fusión "Tm" que no difiera en más de 5°C.
- La secuencia de los *primers* individuales debe iniciarse y terminarse con 1 ó 2 bases púricas.
- Evitar regiones con potencialidad para formar estructuras secundarias internas.
- 6. Evitar poli X.
- Se pueden agregar degeneraciones en algunas posiciones del primer, no es recomendable usar más de 64 combinaciones de *primers* degenerados en una muestra.

(Grigorio Ernesto, S.F.).

Los *primers* degenerados fueron diseñados a partir de las regiones de éstas secuencias, utilizando el programa Perl Primer (Marshall, 2004). Un *primer* degenerado es un oligonucleótido con ciertas locaciones en las bases de su secuencia que tienen más de un tipo de nucleótido asociado a esta (degenerado). También se diseñaron *primers* específicos en las zonas más conservadas de éstos genes en especies filogenéticamente cercanas (Anexo 7).

4.6 Amplificación del fragmento de *hsp70* y 18s en DNA y cDNA a partir de los primers diseñados.

Se llevó a cabo la amplificación del DNA y cDNA utilizando los primers diseñados para las secuencias parciales de los genes *hsp70* y *18s*, mediante PCR punto final. Para esto se usó la taq polimerasa Go Taq[®](PROMEGA), y la reacción de PCR se llevó a cabo en un termociclador GeneAmp[®] PCR System 9700 de Applied Byosistems (Anexo 8).

Para comprobar la correcta amplificación de los productos de PCR se llevó a cabo electroforesis en gel de agarosa al 1.5 y 2.0%, con TAE (solución de Trisacetato y EDTA) teñidos con GelRed[™] (Biotium). Se identificaron fragmentos de tamaño esperado y no esperado con la ayuda de una escalera de DNA de 100 pb (PROMEGA) y con la ayuda de otros fragmentos de tamaño conocido.

4.7 Secuenciación, alineamiento y análisis de las secuencias obtenidas.

En aquellas reacciones donde se obtuvo más de una banda como producto del PCR, es decir bandas inespecíficas, se procedió a cortar las bandas del gel, y se extrajeron utilizando el kit QIAquick Gel Extraction (QIAGEN). Una vez extraídas y purificadas las bandas se mandaron a secuenciar (SeqXcel).

La secuencia de *18*s específica de la especie *Cancer antennarius*, se editó utilizando el programa Chromas 2.4. Se verifico que la secuencia obtenida fuera del gen *18*s realizando un blast esa misma secuencia y se realizó un alineamiento con las primeras secuencias desplegadas en el blast utilizando el programa MEGA 5.1 (Tamura *et al.*, 2011).

Para comprobar que la secuencia del gen *18s* pertenece a *Cancer antennarius* se realizó un árbol filogenético con crustáceos utilizando el programa MEGA 5.1 (Tamura *et al.,* 2011).

5. RESULTADOS:

5.1 Muestreo, extracción de RNA y DNA

Se realizaron dos muestreos, el primero en octubre del 2012 (muestras experimentales sometidas al experimento de TCMax, para la obtención y secuenciación del gen blanco *hsp70*) y el segundo en Abril del 2013 (muestras no experimentales utilizadas para estandarización y secuenciación del gen de referencia *18*s. La extracción del segundo muestreo permitió obtener la cantidad necesaria de DNA y RNA para las pruebas subsecuentes.

Para el primer muestreo se obtuvieron 62 organismos de los cuales 59 eran hembras y 3 eran machos, 43 eran organismos experimentales y 20 eran controles (tabla 1). Estos se dividían en cuatro grupos de aclimatación de 15, 18, 21 y 24°C (para información completa del muestreo ver Anexo 9).

No. De organismos	Temperatura °C	Macho	Hembra	Experimentales	Controles
13	15	0	13	9	4
17	18	2	15	12	5
17	21	0	17	12	5
15	24	1	14	10	5
62		3	59	43	19

Tabla 1.0. Número de organismos, temperatura de aclimatación, sexo, experimental y control.

En el segundo muestreo solo se muestrearon 8 organismos con la única finalidad de obtener la mayor cantidad posible de tejido tanto de músculo como de branquia de *Cancer antennarius*.

5.2 Extracción de DNA y eliminación de RNA con RNAsa.

La extracción de DNA se realizó a partir de muestras del segundo muestreo (no experimental) y estas extracciones fueron cuantificadas por espectofotometría (Nanodrop).

Se obtuvieron concentraciones de DNA con un promedio de 441.2 \pm 241.2 ng/µl, y con un rango de 79.6 - 678.9 ng/µl con un valor promedio de 1.86 \pm 0.21 en la razón 260/280, los valores de pureza del DNA estuvieron dentro de los rangos aceptables (Fig. 2.0).

Con respecto a la calidad, en términos de integridad del DNA extraido, evaluada mediante electroforesis en agarosa, se observó que la muestra 1 del segundo carril de branquia presenta un barrido por debajo de donde están las bandas de DNA que podría estar relacionado con contaminación ó degradación de la muestra procesada (presencia de fragmentos de tamaño más pequeño). Mientras que, las muestras correspondientes a los carriles 2, 3 y 4 presentan una degradación/contaminación mucho menor, ya que prácticamente sólo se ve la banda de DNA, lo cual indica que la mayoría de los fragmentos pertenece a un mismo tamaño de alto peso molecular (Fig. 2.0). La muestra 4 fue la más limpia, y con alto peso molecular ya que es en la que se observa un menor barrido. Se utilizó esta muestra para estandarización del PCR punto final con

DNA debido a que es la muestra de mejor calidad, y al tener menos contaminantes, mejora su cuantificación mediante espectrofotometría (Nanodrop). Las bandas superiores que se observan en lo pocillos del gel, son DNA que no migró en el gel, ya que probablemente se cargaron las muestras en un gel con un % de agarosa muy alto para el tamaño de las bandas superiores(3 µl por muestra). Comparando ambos protocolos, no se encontró una diferencia significativa con la excepción de la muestra 1 del segundo carril que presenta degradación. En cuanto a músculo contra branquia, tampoco se puede apreciar una diferencia significativa en intensidad (Fig. 2.0).

Figura 2.0. Electroforesis de extracción de DNA con SDS e isopropanol para muestras de branquia y músculo de *Cancer antennarius* (Gel Agarosa 1% TAE 1x). Carril 1: control positivo del gel, 2: Muestra 1 (EB14) de branquia, extracción realizada con fenol/cloroformo, 3: Muestra 2 (EM11) de músculo, extracción realizada con sales e isopropanol, 4: Muestra 3 (RM13) de músculo, extracción realizada con fenol/cloroformo y 5: Muestra 5 (RB20) de branquia, extracción realizada con sales e isopropanol.
5.3 Extracción de RNA

En los organismos del muestreo experimental se realizó la primera extracción de RNA de 24 muestras: 12 de músculo y 12 de branquia las cuales fueron extraídas en cuatro grupos de acuerdo a las temperaturas de aclimatación. Para conocer la cantidad y calidad del RNA en la extracción se utilizó un espectrofotómetro (Nanodrop) (Tabla 1.1), obteniéndose una concentración promedio de 374.7 ±153.11 ng/µl con un mínimo de 204.1 ng/µl y un máximo de 692.8 ng/µl; una cantidad promedio de 29.9 µg de RNA con un mínimo de 16.3 µg y un máximo de 55.4 µg en 80 µl de H₂O por cada una de las 24 muestras. La relación 260/280 tuvo un promedio de 1.96 ±0.12 con un rango entre 1.48 y 2.08 (para información completa del muestreo ver Anexo 10).

No. de muestras	Temperatura °C	Branquia	Músculo	Promedio 260/280	Promedio RNA total ng/µl	Promedio RNA total μg en 80 μl	
6	16	3	3	1.95	387.5	31.0	
6	19	3	3	2.01	317.5	25.4	
6	22	3	3	1.88	346.5	27.7	
6	25	3	3	2.02	447.4	35.8	

Tabla 1.1. Número de muestras utilizadas para la extracción, temperaturas iniciales de aclimatación, cantidad de muestras por tejido, pureza de la muestra y cantidad de RNA.

Con el fin de optimizar el tejido del muestreo experimental, se realizó la extracción de tejido correspondiente a un segundo muestreo, para poder estandarizar tanto las técnicas de extracción (RNA y DNA), como la técnica de PCR punto final. Las muestras experimentales fueron almacenadas a -80°C para posteriormente ser utilizadas para el análisis de la expresión de genes. Se

realizó la extracción de RNA de ocho muestras, donde se obtuvo una concentración promedio de 533.3 \pm 167.85 ng/µl con un mínimo de 284.3 ng/µl y un máximo de 733 ng/µl, la relación 260/280 tuvo un valor promedio de 1.92 \pm 0.04, estando dentro de los rangos aceptables de pureza.

Para evaluar la calidad de la extracción de RNA se realizó una electroforesis en gel de agarosa al 1% (Fig. 2.1). En los diferentes geles obtenidos se identificaron características como intensidad en la banda deseada, la integridad de las bandas 18S y 28S ó la contaminación.

Las concentraciones de RNA, en ng/µl, de las muestras observadas en el gel en la figura 2.1. fueron las siguientes: 1) 302.4, 2) 544.9, 3) 288.1, 4) 345.8, 5) 204.1, 6) 314.4, 7) 221.6, 8) 292.6, 9) 167.2 y 10) 114.0. Teniendo un máximo de 544.9 ng/µl, un mínimo de 114.0, ng/µl con un promedio de 279.24 ng/µl, para las cuales se cargó 1 µg de cada una en el gel. Las muestras 4 y 8 no presentan degradación ya que no se observa un barrido de bandas pero probablemente tengan una concentración menor de la que se midió en el espectrofotómetro, ya que se cargó la misma concentración calculada (1 µg) de cada muestra de acuerdo a esas concentraciones medidas y estas dos bandas se observa más tenues. La muestra 10 parece tener una ligera degradación ya que la banda 18S se ve levemente barrida lo cual hace que se vea menos definida. En general la mayoría de las muestras parecen tener buena calidad ya que tienen bandas definidas (Fig. 2.1).

Figura 2.1. Electroforesis de extracción de RNA con Trizol y cloroformo para muestras de branquia y músculo de *Cancer antennarius* (Gel de Agarosa al 1.5% TAE 1x). Carril 1: muestra 1 (1B25) de branquia, 2: muestra 2 (10M25) músculo, 3: muestra 3 (3M16) de músculo, 4: muestra 4 (12B16) de branquia, 5: muestra 5 (2B22) de branquia, Carril 6: muestra 6 (16M22) de músculo, 7: muestra 7 (14M19) de músculo, 8: muestra 8 (15B19) de branquia, 9: muestra 9 (control) de branquia, 10: muestra 10 (control) de branquia.

5.4 Tratamiento con DNasas y cDNA por trancriptasa reversa

Después del proceso de extracción de RNA se realizó la limpieza y purificación de la muestra (tratamiento con DNasa), evaluando la calidad con un gel de agarosa al 1.5%, y cuantificando con el espectrofotómetro. Se obtuvo una concentración aproximada en la muestra 1) 531.2 ng/µl, 2) 444.8 ng/µl, 3) 280.6 ng/µl, y 4) 274.9 ng/µl, con un mínimo de 274.9 y un máximo de 531.2 ng/µl, un promedio de 382.87 \pm 109.49 ng/µl y una relación 260/280 promedio de 1.98 \pm 0.03. Se observa en el gel que el tratamiento con DNasa no fue tan exitoso en la purificación, debido a que se observó un barrido en las muestras, que

posiblemente sea el DNA, sin embargo se observan las bandas de RNA (28S y 18S) intactas (Fig. 2.2). Para la síntesis de cDNA se utilizó 1 ug de RNA por muestra, la cantidad que se utilizaba por reacción varía dependiendo de la concentración de RNA de la muestra a utilizar. Las muestras de cDNA utilizadas en PCR punto final amplificaron bandas de diferente tamaño a las amplificadas con DNA genómico, lo que confirma que el tratamiento con DNAsa fue exitoso (Sección 5.6, Fig. 2.8).

Figura 2.2. Muestras de RNA total tratadas con DNasas en 2 geles con las mismas condiciones de *Cancer antennarius* (Agarosa 1.5% TAE 1x). Carril 1: Muestra 1 (13M25) de músculo, Carril 2: Muestra 2 (15M19) de músculo, Carril 3: Muestra 3 (1B25) de branquia y Carril 4: Muestra 4 (16B22) de branquia.

5.5 Diseño bioinformático de primers para PCR punto final

Para ambos genes de interés (Tabla 1.2) se hizo un blast en el motor de búsqueda de NCBI GENBANK (búsqueda comparativa de secuencias) de organismos cercanos a *Cancer antennarius* limitando la búsqueda a decápodos. Se obtuvieron varias secuencias en ambos genes, las cuales fueron alineadas en el programa Mega 5.1 (Fig. 2.0 y 2.1).

Tabla 1.2. Genes de interés (gen de referencia 18s y gen blanco hsp70).

Gen	Función general
hsp70	Chaperona molecular (forma no constitutiva)
185	ARN estructural (gen constitutivo)

Se observó que las secuencias provenientes de especies cercanas del gen *18s* (Tabla 1.3) están altamente conservadas (similitud del 99% y cobertura del 99%) (Fig. 2.3; Anexo 12) por lo que se decidió diseñar primers específicos para el PCR punto final.

Gen	Especie	Clave de acceso	Autor
18s	Cancer pagurus	DQ079743	Porter, M. L., 2005.
18s	Gaetice depressus	AY859577	Mallat, J., 2006.
18s	Ebalia t <i>uberculosa</i>	EU920944	Toon, A., 2008.
18s	Carcinoplax suruguensis	FJ943439	Bracken, H. D., 2009.
18s	Dairoides kusei	HM637992	Lai, J. C. Y., 2010.
18s	Eriphides hispida	HM638002	Lai, J. C. Y., 2010.
18s	Hypothalassia armata	HM638008	Lai, J. C. Y., 2010.

Tabla 1.3. Especies utilizadas en alineamiento de secuencias del gen *18s* y su número de acceso a la base de datos de NCBI.

Species/Abbrv	Group Name *	* * * * * *	* * * * * *	* * * * *	* * * *	* * * * *	* * * *	* * *	* * *	* * *	* * *
1. gi 56968031 gb AY859577.1 _Gaetice_depressus	le <mark>T</mark>	AATGAC	TAATAG	GAACA	GGCG	GGGG	ATTO	GTA	TTG	C <mark>G</mark> A	C <mark>G</mark> C
2. gi 71726237 gb DQ079743.1 _Cancer_pagurus_ve	rc <mark>I</mark>	A A T <mark>G</mark> A C	TAATAG	GAACA	GGCG	GGGG	ATTO	G T A	TTG	C <mark>G</mark> A	C <mark>G</mark> C
 gi 218526688 gb EU920944.1 _Ebalia_tuberculo 	.c I	A A T <mark>G</mark> A C	TAATAG	GAACA	GGCG	GGGG	ATTO	G T A	TTG	C <mark>G</mark> A	C <mark>G</mark> C
4. gi 305661017 gb HM637992.1 _Dairoides_kusei	<mark>T</mark>	A A T <mark>G</mark> A C	TAATAG	GAACA	GGCG	GGGG	ATTO	GTA	TTG	C <mark>G</mark> A	C <mark>G</mark> C
5. gi 260850260 gb FJ943439.1 _Carcinoplax_surv	n <mark>T</mark>	A A T <mark>G</mark> A C	T <mark>a a</mark> t <mark>a g</mark>	GAACA	GGCG	GGGG	ATTO	GTA	TTG	C <mark>G</mark> A	C <mark>G</mark> C
 gi 305661027 gb HM638002.1 _Eriphides_hispid 	.c I	AATGAC	TAATAG	GAACA	GGCG	GGGG	ATTO	GTA	TTG	C <mark>G</mark> A	C <mark>G</mark> C
 gi 305661033 gb HM638008.1 _Hypothalassia_a: 	II I	AATGAC	TAATAG	GAACA	GG <mark>C</mark> G	GGGG	ATTO	GTA	TTG	C <mark>G</mark> A	C <mark>G</mark> C

Figura 2.3. Programa MEGA, utilizado para alineamiento de secuencias, a la izquierda muestra el nombre de la especie con su clave asignada por NCBI y en la parte derecha se tiene la secuencia de nucleótidos (a partir de DNA genómico en el caso de *18s*). De las secuencias alineadas se llegó a una secuencia consenso, a partir de la cual se diseñaron primers específicos (alineamiento completo de secuencias Anexo 12).

En el caso de las secuencias cercanas del gen *hsp70* (Tabla 1.4), también se obtuvieron secuencias conservadas (87% en similitud y 83% en covertura), sin embargo, no al mismo grado que para el gen *18s* (99% en *18s* vs 87% en *hsp70*) por lo que se diseñaron primers degenerados y primers específicos.

Para los primers degenerados se alinearon diferentes secuencias de organismos cercanos a *Cancer antennarius* (Fig. 2.4).

Gen	Especie	Clave de acceso	Autor
hsp70	Penaeus monodon	AF474375	Lo, W. Y., 2002.
hsp70	Pachygrapsus marmoratus	DQ173922	Jayasundara, N., 2005.
hsp70	Marsupenaeus japonicus	EF091692	Zhang, Z., 2006.
hsp70	Scylla paramamosain	EU754021	Liu, Y., 2008.
hsp70	Portunus trituberculatus	FJ527835	Cui, Z., 2009.
hsp70	Scylla serrata	JQ780845	Fu, W., 2013.
hsp70	Eriocheir sinesis	EU857483	Xie, S. T., 2008.
hsp70	Exopalaemon carinicauda	HQ185257	Han, J. Y., 2010.

Tabla 1.4. Especies utilizadas en alineamiento de secuencias del gen hsp70.

Species/Abbrv	Gr	* *	*	* *	*	* *	*	*	*	*	* *	* *	*	* *	*		*	*	*	*	*	* *	* *
1. gi 33319728 gb AF474375.1 _Penaeus_monodon_h	1	GG	Α	G Z	A	CA	A	G A	T :	C A	СС	A	Τ	C A	С	CA	A	C <mark>G</mark>	A	CA	A	GØ	GG
 gi 74274967 gb DQ173922.1 _Pachygrapsus_marr 	n	GG	Α	G A	A	CA	A	G A	I	A	СС	A	Τ	CA	С	T A	A	C G	A	CA	A	GQ	G G
 gi 167508974 gb EF091692.2 _Marsupenaeus_jap)	GG	Α	G A	A	CA	A	G A	T	CA	СС	A	Τ	CA	С	CA	A	C G	A	CA	A	GĢ	G G
 gi 190589905 gb EU754021.1 _Scylla_paramamos 	8	GG	Α	G A	A	CA	A	G A	T	A	СС	A	Τ	CA	С	T A	A	ΤG	A	CA	A	GQ	G G
5. gi 219816403 gb FJ527835.1 _Portunus_tritube	2	GG	Α	G A	A	CA	A	G A	T	A	СС	CA	Τ	CA	С	T A	A	ΤG	A	CA	A	GĢ	G G
6. gi 385300910 gb JQ780845.1 _Scylla_serrata_}	1	GG	Α	G A	A	CA	A.	ΑA	T	CA	СС	A	Τ	CA	С	C G	A	C G	Α	r A	A	GĢ	G G
7. gi 195542172 gb EU857483.1 _Eriocheir_sinens	8	GG	Α	G A	A	CA	A	G A	T	A	СС	A	Τ	CA	С	T A	A	ΤG	A	CA	A	GQ	G G
8. gi 307634443 gb HQ185257.1 _Exopalaemon_car:		GG	Α	G A	A	CA	A	G A	T :	C A	СС	CA	Τ	C A	С	CA	A	C G	Α	CA	A	GĢ	GG

Figura 2.4. Programa MEGA, utilizado para alineamiento de secuencias, a la izquierda muestra el nombre de la especie con su clave asignada por NCBI y en la parte derecha se tiene la secuencia de nucleótidos (a partir de RNAm en el caso de *hsp70*). De las secuencias alineadas se llegó a una secuencia consenso, a partir de la cual se diseñaron *primers* degenerados, así como *primers* específicos en las zonas más conservadas (alineamiento completo de secuencias Anexo 13).

Se deben tomar en cuenta los parámetros base para la realización de *primers* óptimos para PCR (metodología, sección 4.5), dado que si los *primers* no están bien diseñados pueden amplificar fragmentos no deseados ya sean de otros genes o por estructuras secundarias entre los *primers* o no amplificar ningún fragmento.

La funcionalidad teórica de los *primers* se evaluó con el programa PerlPrimer (Marshall, 2004) (Fig. 2.5) en donde se aprecian diferentes parámetros que se pueden revisar para evaluar la calidad teórica de un primer (información completa obtenida de los *primers* en Anexo 8).

Forward primer
Tm: 61.43 °C Length: 20 bases GC: 55 %
dS°: -438.83 eu dH°: -158.00 kcal/mol dG°37: -21.90 kcal/mol
Reverse primer
Sequence GCTCTCAATCTGTCAATCCTTCC
Tm: 61.51 °C Length: 23 bases GC: 47 %
dS°: -498.48 eu dH°: -178.00 kcal/mol dG°37: -23.40 kcal/mol
Dimers
Most stable 3' extensible primer-dimers (at $37^{\circ}C$), if any
More stable non-extensible primer-dimers (at 37°C), if any
Forward vs. Forward: -0.08 kcal/mol
5' CCGCCTCTTTCAAGTGTCTG 3' 3' GTCTGTGAACTTTCTCCCGCC 5'

Figura 2.5. Programa PerlPrimer en el cual podemos ver las fuerzas de atracción entre los *primers* y por ende la fuerza de las estructuras secundarias que se pueden llegar a formar, como son los dímeros, otros datos importantes que se ven en el programa es la Tm ("Melting temperature" que se refiere a la temperatura de fusión de los *primers*), el porcentaje de guaninas y citosinas y el tamaño de los *primers*.

Los *primers* específicos fueron generados a partir de una sola secuencia (*Scylla paramamosain*) cercana a *Cancer antennarius* (mismo infraorder: Brachyura) pero en zonas conservadas (comparando con secuencias de otras especies cercanas) realizados de manera automática con el programa PerlPrimer. Obteniéndose varios pares de *primers* con posible funcionalidad en la amplificación de los genes de interés (Tabla 1.5), para ver la información completa de los *primers* (revisar Anexo 8).

Gen	Secuencia	Tamaño (bases)	Amplicón
			esperado
hsp70	F: TTCAAGCGAAAGTACAAGAAGG	22	867
	R: GAAACAGTAAGACTCCAGGGC	21	
hsp70 N	F: GCATGGCAAGGTGGAAATC	19	1134
	R: GACAAAGGCGCTACATCCAG	20	
hsp70	F: CGTRGGTGTSTTCCAGCAT	19	707
	R: GGGTCCTTCTTGTACTTCCG	20	
hsp70	F: CAGCATSSCAAGGTGGARAT	20	694
	R: GGGTCCTTCTTGTACTTCCGCT	22	
18s	F: GGAATAATGGAATAGGACCTCGG	23	742
	R: CGTTCATGGGAGACAATTGC	20	
18s	F: CAATGGCTATAACGGGTAACG	21	533
	R: GGTCCAAGAATTTCACCTCTAGC	23	
18s	F: CCGCCTCTTTCAAGTGTCTG	20	977
	R: GCTCTCAATCTGTCAATCCTTCC	23	
18s	F: GAATCTGAATAACTTGTCGCTG	22	1073
	R: CTCCACCAACTAAGAACGG	19	

Tabla 1.5. Gen al cual pertenece el par de primers	s, secuencia y tamaño del primer y del
amplicón.	

5.6 Amplificación de genes 18s y hsp70 por PCR punto final

La amplificación del gen de referencia *18s* se realizó a partir de DNA genómico y cDNA (de muestras no experimentales) con un par de *primers* específicos: F: GGAATAATGGAATAGGACCTCGG y R: CGTTCATGGGAGACAATTGC, los cuales mostraron amplificación en el rango de temperatura de 50°C a 60°C. Se comenzó la estandarización con un programa y concentración de reactivos estándar (Tabla 1.6 y 1.7) dentro de los rangos especificados en el manual del Kit para PCR (PROMEGA).

Tabla 1.6. Concentración de reactivos inicial para la estandarización del gen *18s*. Máster mix para una muestra de un volumen final de 15μ l.

Receta p/ una muestra [inicial]	Cantidad µl	[final]
Go Taq Flexi Buffer 5x	5	1x
MgCl ₂ 25 mM	4	4 mM
dNTP 10 mM	1	0.4 mM
F(10 μM)	1	0.4 μM
R(10 μM)	1	0.4 μM
Go Taq DNA pol. (5 U/µl)	0.25	1.25 U
H ₂ O (variable)	9.75	
cDNA (variable)	3	

 Tabla 1.7. Programa inicial utilizado en el termociclador para el gen 18s.

Stage1	Stage2	Stage3
Ciclos x 1	Ciclos x 35	Ciclos x 1
95°C x 2 min	95°C por 30 seg	72°C x 5 min
	55°C x 1 min	4°C x ∞
	72°C x 1 min	

Estos valores finales, como la concentración de reactivos (Tabla 1.6) y los tiempos y temperaturas del programa (Tabla 1.7) fueron el resultado de la modificación de las condiciones estandar para obtener los resultados más óptimos, esto significa lograr que se amplifique la mayor cantidad de producto posible para los *primers* diseñados, sin productos inespecíficos con la menor cantidad de reactivo posible ya que para la secuenciación de un gen se requiere una concentración mínima entre 10 y 20 ng/µl con un mínimo de 10 µl de producto (programa final y concentración de reactivos final Anexo 8).

Se realizó un PCR para amplificar el gen *18s* a partir de DNA genómico, en el cual se utilizó un gradiente de temperatura para ver cuál era la temperatura óptima para los *primers* diseñados, el DNA utilizado fue de branquia y se diluyó el mismo 1:10 para utilizarlo en la reacción de PCR (que fue la dilución que se encontró amplificaba para el DNA extraido), donde se obtuvo amplificación notable de una banda posible del gen *18s* (Fig. 2.6)

Figura 2.6. Gel de producto de PCR con gradiente de temperatura de 50°C a 60°C de *primers* de *18s* en DNA genómico (Agarosa 1% TAE 1x).

Una vez que se obtuvo una banda en DNA genómico de buena calidad y cantidad (una banda intensa y clara sin barridos) se comprobó que los tamaños eran de 1 kb (tamaño esperado del amplicón con los *primers* realizados del gen *18s).* En el gel se observan las bandas correspondientes a los fragmentos amplificados entre 900 pb y 1,000 pb (Fig. 2.7).

Figura 2.7. Gel con escalera y banda supuesta de *18s* para amplificación en DNA genómico (Agarosa 2% TAE 1x) Carril 1: Escalera de 50 pb, Carril 2: producto de PCR.

El siguiente paso fue amplificar el gen *18s* a partir de cDNA donde se obtuvo una banda de alrededor de 200 pb un poco más grande que la banda de los *primers*, pero muy por debajo de la banda que amplificó en DNA (Fig. 2.8 y 2.9).

Figura 2.8. Gel TBE agarosa al 1.5%. Carril 1-4: Producto de PCR de 50°C a partir de 2 μ l de cDNA (sin diluir), Carril 5-6: controles positivos de producto de PCR de 50°C a partir de DNA, Carril 8: control negativo.

Figura 2.9. Gel TBE agarosa al 1.5%. Carril 1-2: Producto de PCR a partir de 2 µl de cDNA de branquia (EB5) sin diluir con *primers* de *18s*, Carril 3: control positivo de producto de DNA con *primers* para *18s*, Carril 4: control negativo.

.

Finalmente se prosiguió a realizar una amplificación del gen que tuviera una concentración entre 10 y 20 ng/µl con más de 30 µl de producto que es la cantidad y concentración requerida para realizar la secuenciación del mismo (tanto en amplificación a partir de DNA como cDNA).

La amplificación del gen *hsp70* se llevó a cabo con los *primers*: F: GCATGGCAAGGTGGAAATC y R: GACAAAGGCGCTACATCCAG; y de la misma manera se estandarizó la técnica para su funcionamiento óptimo en la cual se encontró que era posible la amplificación en DNA de muestras no experimentales por esta razón se utilizaron estas muestras para la estandarización y secuenciación.

Se utilizaron las mismas concentraciones y programa que para la amplificación del gen *18s*, y un gradiente de temperaturas. Dado que se obtuvieron varios productos con bandas de tamaño entre 300 y 1,000 pb, en una muestra de DNA genómico, se tuvo que purificar las bandas de interés para obtener producto para secuenciar (Fig. 2.10).

Figura 2.10. Gel de producto de PCR de 50°C con DNA genómico y *primers* de *hsp70* (Agarosa con TBE 1.5%). Carril 1-2: Muestra de producto de DNA diluido 1/10, Carril 3: control negativo y Carril 5: control positivo de erizo con un tamaño conocido de 700 pb.

Se realizó una amplificación para obtener suficiente producto de PCR y realizar la purificación de las bandas de interés (Figs. 2.11 y 2.12). Se corrió el producto en gel de agarosa 1.5% con escalera para verificar los tamaños exactos de las bandas obtenidas. Del producto obtenido se purificaron tres bandas aproximadamente de 400, 500 y 1000 pb, considerando que el tamaño del amplicón esperado de *hsp70* es de aproximadamente 870 pb).

Figura 2.11. Gel de agarosa 1.5% con TBE 0.5x. Producto de PCR con *primers* de *hsp*70 para purificación de bandas.

Figura 2.12. Gel agarosa 1.5% , TBE 0.5x. Bandas purificadas, carril 1: producto de 500 pb, carril 2: producto de 400 pb y carril 3: producto de 900 pb aproximadamente.

El siguiente paso fue realizar amplificación en cDNA con *primers* de *hsp70* pero diferentes a los que se usaron para DNA, F: TTCAAGCGAAAGTACAAGAAGG, R: GAAACAGTAAGACTCCAGGGC ya que los *primers* que amplificaron en DNA no mostraban amplificación aparente para cDNA. Se obtuvieron varias bandas con estos *primers*, siendo la banda de interés alrededor de 400 pb (Fig. 2.13).

Figura 2.13. Gel de producto de PCR de 50°C de *primers* de *hsp70* con cDNA (Agarosa 1.5% TBE). Carril 1: Escalera de 100pb, Carril 3-4: Muestra de cDNA de músculo.

También se realizó una prueba de amplificación cruzada con los *primers* diseñados para el gen *hsp70* con otras especies de invertebrados marinos, obteniendose amplicones en el rango de tamaño esperado para algunos de los moluscos gasteropodos probados (Fig. 2.14), encontrándose igualmente presencia de bandas inespecíficas. Sin embargo, para la muestra de camarón

Litopenaeus vanamei, especie filogenéticamente más afin a *C. antennarius* del subfilo crustacea, no se obtuvo amplicón.

HSP70 - abulones

Figura 2.14. Geles de agarosa 1.5% con TBE 0.5x, corridos por 80 min. Gel de abulones: carril 1-2 (R)– Abulón Rojo, carril 3-4 (N) - Abulón Negro, carril 5-6 (Am) – Abulón Amarillo, carril 7-8 (Az) – Abulón Azul, carril 9-10 (V) – Abulón verde japonés, carril 11-12 (RV) – Abulón híbrido, carril 13-14 (VR) – Abulón híbrido y carril 15-16 (H) – hibridos CMSC. Gel de organismos varios: AR – Abulón Rojo, AN – Abulón Negro, Aam – Abulón Amarillo, AAz – Abulón Azul, AV – Abulón verde japonés, RV – Abulón híbrido, VR – Abulón híbrido, Pep – Pepino de mar, Nud – Nudibranquio, Car – Caracol, Alm – Almeja, Pul – Pulpo, Cam – Camarón blanco y Lap – Lapa.

5.7 Secuenciación y diseño de primers específicos

La secuenciación del gen *18s* se realizó directamente del producto de PCR ya que se obtuvieron bandas específicas que solo requerían ser purificadas de *primers*. Se obtuvo un cromatograma (Fig. 2.15) en el cual se observó una secuencia de aproximadamente 940 pb (secuencia competa en anexo 11), y un archivo en texto con la secuencia obtenida.

Figura 2.15. Cromatograma visto con el programa Chromas 2.4 de la secuencia obtenida con amplificación a partir de DNA genómico con *primers* diseñados para el gen *18*s.

Se realizó un blast de esta secuencia en NCBI GENBANK para corroborar que nuestro producto amplificado era parte del gen *18s*, observándose un porcentaje de similitud del 99% con cobertura del 92% con secuencias del gen *18s* reportada para *Cancer pagurus*, especie de cangrejo del mismo género que *Cancer antennarius* (Tabla 1.8). Asimismo, se observó que es una secuencia sumamente conservada, dado que aún con especies pertenecientes a otro género es posible obtener alto porcentaje de similitud.

Especie	Clave acceso	Autor	Covertura %	Similitud %
Cancer pagurus	DQ079743	Porter, M. L., 2005.	92	99
Acantholobulus	HM637985	Lau, J. C. Y., 2010.	92	99
bermudensis				
Praebebalia longidactyla	EU920946	Toon, A., 2008.	92	99
Hepatus epheliticus	AF436004	Morrison, C. L., 2002.	92	99
Platyxanthus orbignyi	KC771003	Lau J. C. Y, 2014.	92	99

 Tabla 1.8. Los organismos con secuencias de 18s más cercanas a la obtenida.

Se elaboró un análisis con un árbol filogenético (Fig. 2.16) el cual se realizó con secuencias obtenidas de diferentes especies de crustáceos.

Este árbol contiene algunos organismos del género *Cancer*, como *Cancer* magister, *Cancer pagurus* y *Cancer antennarius* que son los organismos más filogenéticamente cercanos a la especie en estudio. Este análisis también presenta crustáceos no tan cercanos como *Eriphides hispida e Hypothalassia* armata que se encuentran en la parte media del árbol ya que siguen siendo decápodos.

Finalmente *Prorhynchus fontinalis, Geocentrophora applanata, Geocentrophora marcusi, Pleomothra apletocheles y Speleonectes tulumensis* que se encuentran en la parte baja del árbol, en donde se observó que son los organismos filogenéticamente más lejanos de *Cancer antennarius* relacionados a nivel del subfilo crustacea.

Figura 2.16. Árbol filogenético con gen *18s* realizado con el método de máxima verosimilitud en algunas especies de crustáceos.

Para el gen *hsp70* se realizó purificación de la banda cercana a 1000 pb y la de 500pb las cuales se mandaron a secuenciar. Con el producto de 500 pb se obtuvo en la secuenciación un fragmento de 154 pb a partir del primer F y un fragmento de 359 pb con el primer R, para el caso del producto cercano a 1000 pb se obtuvo un fragmento de 435 pb a partir del primer F y otro fragmento de 439 pb del primer R.

El blast de los fragmentos de 154 pb y 359pb obtuvo mayor similaridad y cobertura con *Vibrio parahaemolyticus* que es una bacteria (cobertura de 93% y 83% con similaridad de 76% y 68% respectivamente).

El blast de los fragmentos de 435 y 439 tuvo un mayor porcentaje de similaridad con *Ruegeria pomeroyi* y *Leisingera methylohalidivorans,* ambas especies son bacterias (cobertura 95% y 95% con similaridad de 74% y 76% respectivamente). En ambas secuencias no había similaridad con el gen *hsp70* en ninguna especie y por esto se descartaron estos productos.

6. DISCUSIONES:

6.1 Colecta de tejido y extracciones de DNA y RNA.

Para el aislamiento de los genes 18s y hsp70 en el cangrejo Cancer antennarius, se realizaron estandarizaciones y modificaciones para esta especie. Uno de los primeros retos fue la selección del tejido a partir del cual se aislaron los ácidos nucleicos. En el caso del gen 18s, en trabajos previos para caracterizar estos genes en otros crustáceos marinos se han utilizado distintos tejidos y es posible aislarlo de casi cualquier tejido, ya que este es un gen constitutivo con una función clave en los procesos de síntesis de proteínas (Aursnes *et al.,* 2011); además de ser altamente conservado dentro del phylum Branchyuran (Spears *et al.,* 1992). La limitante en este caso, es la cantidad de ácidos nucleicos que se obtienen y la integridad de los mismos.

Sin embargo, para la caracterización del gen hsp70, fue necesario utilizar tejido de músculo y de branquia, los cuales son tejidos en donde previamente se ha caracterizado la expresión de este gen en otras especies de crustáceos (Qian *et al.*, 2012). El músculo es un tejido importante porque es un órgano donde se llevan a cabo la mayoría de los procesos energéticos en los organismos marinos; mientras que la branquia es un tejido que es parte de un órgano multifuncional que está directamente relacionado con el transporte de iones, el balance acido/base en el organismo y la excreción de amoniaco (Raymond *et al.*, 2012). Por esta razón este tejido debe ser directamente afectado ante

diferentes factores estresantes y por su naturaleza las HSP70 deben actuar en las proteínas de este tejido.

Los resultados nos indican que en la calidad de una extracción de RNA y DNA influyen muchos factores, que van desde el muestreo del organismo hasta la apropiada remoción de los solventes usados durante la purificación de éstos. Uno de estos factores es el tipo de tejido utilizado; por ejemplo en las extracciones de RNA se obtuvo una concentración más alta en las muestras de músculo en comparación con las de branquia, lo cual probablemente sea debido al proceso de homogenización utilizado, ya que las muestras de músculo se homogenizan más rápido y con menos fuerza de fricción debido a la naturaleza del mismo tejido.

Para obtener una cantidad suficiente de DNA con calidad aceptable para los siguientes análisis, se realizó la extracción con dos protocolos diferentes, uno con sales y el otro con fenol-cloroformo. Sin embargo, no se encontraron diferencias significativas, a excepción de la muestra 1 que presentó un barrido por debajo de la banda de DNA, lo que indica degradación. Al analizar la calidad del DNA extraído en las muestras, se decidió utilizar la muestra 4 para la estandarización del PCR, ya que era la de mejor calidad (sin contaminación e íntegra) proveniente de esta extracción.

Uno de los procesos clave para la obtención de DNA es la homogenización de la muestra, la cual es realizada por lo común con una solución que contiene SDS y EDTA. Es importante que esta solución penetre bien en el tejido, debido a que el EDTA ayuda a evitar la degradación del DNA, ya que secuestra los iones metálicos que son necesarios para que actúen las enzimas nucleasas que lo degradan (Madden *et al.,* 2004); mientras que el SDS es un detergente desnaturalizante de proteínas y ayuda a removerlas (Seddon *et al.,* 2004).

Para la extracción de RNA se utilizó el método de trizol-cloroformo, donde antes de homogenizar la muestra, se fragmentó para ayudar a su homogenización. Este paso es importante para ayudar al proceso de homogenización con el trizol, ya que este contiene tiocianato de guanidina que es un degradante de proteínas como las nucleasas por lo cual evita que se degrade el DNA y RNA. Por otra parte, también contiene fenol que junto con el cloroformo ayuda en la separación de fases, quedando las proteínas en la fase orgánica y los ácidos nucleicos y sales en la fase acuosa (Chomczynski y Sacchi, 2006). El protocolo utilizado fue eficiente ya que provee entre 37 y 42 ug de RNA lo cual es una concentración alta y con bandas de buena calidad. Al observar geles de extracciones de RNA generalmente se espera que la banda 28S (banda superior) se vea aproximadamente dos veces más brillante que la banda correspondiente al 18S por ser una subunidad más grande (Hoover, 2012). Sin embargo, en algunos organismos invertebrados ocurre un efecto denominado *"hidden break"* que es cuando la molécula de 28S sufre un rompimiento en el centro (en condiciones no desnaturalizantes la molécula mantiene su estructura por puentes de hidrógeno), y al separarse su movimiento electroforético en el

gel es muy similar al de la molécula 18S. Esto ocasiona que en algunos casos aparentemente solo haya una banda o que la banda 28S sea menos intensa que la 18S, dependiendo del grado de desnaturalización de la molécula 28S (Fujiwara y Ishiwaka, 1986). Este mismo fenómeno fue observado en este estudio para el RNA obtenido a partr de *Cancer antennarius*, por lo que al revisar la calidad de las extracciones se tomó en cuenta únicamente la integridad de la banda correspondiente a la molécula 18S.

En general las extracciones realizadas a partir de tejido muscular presentaron mayor concentración de RNA debido a que el músculo es un tejido blando que opone poca resistencia a la fricción y se homogeniza más fácilmente que la branquia, la cual es un tejido un poco más duro y viscoso que dificulta un poco su rompimiento por fricción mecánica.

Para la incubación con DNasa se utilizaron las muestras que presentaron la mejor calidad en términos de integridad, observando bandas definidas sin degradación, grado de pureza mayor a 1.8 y concentración de las muestras mayor de 300 µg. Estas muestras fueron seleccionadas para la síntesis de cDNA y para estandarizar las condiciones de PCR punto final

6.2 Diseño de *primers* y amplificación por PCR punto final.

Se llevó a cabo la búsqueda de las secuencias de nucleótidos para los genes *hsp70* y *18s* para la especie objetivo de este estudio *Cancer antennarius* en la base de datos de Genbank del Centro Nacional para la Información

64

Biotecnológica (https://www.ncbi.nlm.nih.gov/genbank/), y no se encontró ninguna secuencia correspondiente a ella. Debido a esto, se realizó una búsqueda de estos genes en especies filogenéticamente cercanas en las que existiera registro en la base de datos de Genbank (sección 5.5, Tablas 1.3 y 1.4). En el caso de las secuencias del gen *hsp70*, para obtener un alinamiento más robusto, las secuencias obtenidas de otras especies que presentaron diferencias notables (bajos porcentajes de similitud entre ellas) fueron posteriormente eliminadas del análisis, ya que estas producen discrepancias significativas en los alineamientos. Las diferencias en las secuencias del gen hsp70 pueden estar dadas por pequeñas diferencias evolutivas o pequeñas adaptaciones de nucleótidos, cambiando algunas partes de la secuencia (Lodish et al., 2004). Sin embargo, en el caso de las secuencias del gen 18s no se observaron diferencias significativas entre las secuencias de las especies usadas, debido a que este gen está sumamente conservado entre taxas dada la naturaleza constitutiva de este gen (Aursnes et al., 2011)

Es importante mencionar que la búsqueda de las secuencias de *hsp70* se realizaron en RNAm (cDNA) ya que en ese tipo de secuencias no hay intrones que puedan afectar en el diseño de *primers* al estandarizar la amplificación en cDNA en PCR punto final.

6.2.1 Amplificación por PCR

Los *primers* diseñados fueron útiles para la amplificación del gen *18s*, en un rango de temperaturas de fusión (Tm) de 50 a 60°C en comparación a los *primers* de *hsp70* que solo fueron útiles en la amplificación de bandas o fragmentos desconocidos en un rango de temperatura más corto (entre 50 y 52°C) antes de perder algunas de las bandas de interés, debido a que los *primers* diseñados para *18s* eran más específicos que los de *hsp70*.

Uno de los principales problemas que se enfrentaron durante la estandarización de las amplificaciones mediante PCR, fue encontrar la dilución correcta de DNA a usar, ya que a una concentración mayor a la utilizada de 1:10 la reacción de PCR era inhibida. Esto, probablemente estuvo relacionado a que el DNA fue resuspendido en buffer TE que contiene EDTA (Madden *et al.,* 2004), o bien a la presencia de otros inhibidores de PCR como solventes, pigmentos, etc. (Schrader *et al.,* 2012).

Cabe mencionar que, para otros invertebrados marinos no tan cercanos filogenéticamente (moluscos gasteropodos como abulones de diversas especies y caracol) la amplificación realizada con *primers* del gen *hsp70* diseñados para *C. antennarius* fue exitosa, aunque con presencia de bandas inespecíficas. Lo que sugiere un cierto grado de conservación del gen *hsp70* entre especies de los phylum Mollusca y Crustacea dadas sus relaciones filogenéticas (Lavrov *et al.*, 2004).

6.3 Secuenciación

La primera secuenciación de los productos de *18s* no fue exitosa (tanto en DNA como en cDNA), debido probablemente a un error ya sea por el manejo de la muestra, o por parte de la empresa donde se envió a secuenciar. El cromatograma mostraba múltiples señales de fluorescencia, lo cual puede indicar contaminación de la muestra (Eurofins Genomics, 2009). Tomando esto en cuenta se preparó una segunda muestra de amplificación a partir de DNA en las mismas condiciones a la anterior, y se envió a una nueva empresa de secuenciación (SeqXcel).

La caracterización del gen *hsp70* fue más complicado, ya que como se aprecia en los geles obtenidos de PCR punto final, se obtuvieron bandas inespecíficas en la amplificación. Debido a esto se purificaron las tres bandas superiores por ser las más cercanas al tamaño esperado del amplicón que se debería obtener con los *primers* que se estaban utilizando, de las cuales se descartaron la segunda banda (500 pb) y la primera banda (1000 pb) ya que no dieron un resultado positivo en el blast de secuencias similares para el gen *hsp70*. La tercera banda de 400 pb, no se mandó a secuenciar debido a que su tamaño fue significativamente menor al amplicón esperado (870 pb), pero las bandas o fragmentos que tenían mayor posibilidad de pertenecer al gen *hsp70* eran las que se mandaron a secuenciar debido al tamaño.

6.4 Análisis de la secuencia obtenida.

En el proceso de secuenciación se mide cada nucleótido por diferentes niveles de fluorescencia, cuando en uno de los espacios asignados a cada nucleótido hay contaminación o cuando hay más de un nucleótido en el espacio asignado (polimorfismo de nucleótido simple SNP) y en el fragmento que se está midiendo en ese momento hay más de un pico de fluorescencia, algunas veces en ese espacio sale una lectura inconclusa (N) (Ramírez *et al.*, 2013; Eurofins Genomics, 2009).

Al revisar el cromatograma se observaron picos de fluorescencia producidos por cada nucleótido, con estos picos se puede hacer un estimado de que nucleótido va en los lugares que dan un nucleótido inconcluso (N), por la altura que estos presentan.

Otra forma de eliminar los nucleótidos inconclusos, que fue la que se utilizó, es hacer una comparación entre dos secuencias al tener la secuenciación a partir del *primer forward* y a partir del *primer reverse*, al alinear esas secuencias (haciendo el reverso complementario para el *primer reverse*) puede llegar a una secuencia consenso más completa para tener mejores resultados al hacer análisis posteriores con esa secuencia (Applied Biosystems, 2009).

Es importante determinar la especie con la cual se realizó el aislamiento de los genes, particularmente porque algunas veces puede haber confusión debido a la similitud fenotípica entre algunas especies. Los genes ribosomales (como *18*s

y 28s) y mitocondriales (como el Citocromo oxidasa I o *COI*) son utilizados para estudios de parentesco entre las especies. Dentro de este tipo de análisis hay diferentes trabajos sobre crustáceos de diferente orden, en los cuales utilizan el gen *18s* mostrando el uso de estas secuencias para clasificar diferentes especies (Mallat *et al.*, 2003; Ahyong *et al.*, 2007; Turbeville *et al.*, 1991; Jenner *et al.*, 2009; Regier *et al.*, 2005; Spears *et al.*, 1997).

Al realizar el blast (búsqueda comparativa de secuencias) con la secuencia obtenida esperada de *18s* se obtuvieron secuencias de este gen en especies cercanas, de las cuales solo se utilizaron las primeras secuencias en la tabla de alineamiento. Sin embargo, se puede observar que la secuencia pertenece al gen *18s* y es altamente conservada, y no solo para las secuencias que se presentan en la tabla, el blast presentó varios organismos con una similitud de secuencia por arriba del 95% con cobertura de secuencia por arriba del 95%.

Del árbol filogenético generado con el gen *18*s, se puede observar que la especie *Cancer antennarius* guarda una relación estrecha con otras especies de su grupo taxonómico, género *Cancer,* como *C. pagurus* y *C. magister*. Relaciones reportadas previamente por Harrison y Crespi (1999) utilizando el gen mitocondrial Citocromo oxidasa I (*COI*).

Las secuencias resultantes a partir de los fragmentos obtenidos con los *primers* de las secuencias de *hsp70*, al parecer no obtuvieron ninguna similitud al realizar un blast. Sin embargo, hace falta un análisis más detallado de estas

secuencias para poder afirmar que no corresponden a la secuencia del gen *hsp70*. No obstante lo anterior, no descartamos que también puede deberse a que probablemente no eran *primers* específicos, y que amplificaron otras zonas del genoma. Debido a lo anterior, se recomienda realizar un análisis exhaustivo de estas secuencias, así como probar otros pares de *primers* diseñados.

7. CONCLUSIONES:

El método de extracción de RNA con trizol-cloroformo se estandarizó con éxito para amplificación en PCR punto final en tejido de músculo y branquia de *Cancer antennarius*.

El método de extracción de DNA con sales y solución SNET (SDS yEDTA) se estandarizó de manera exitosa, obteniéndose DNA con la calidad y cantidad necesaria para amplificación en PCR punto final en tejido de branquia de *Cancer antennarius*.

Se diseñaron *primers* funcionales para la amplificación del gen *18s* en *Cancer antennarius*. Se establecieron las condiciones de amplificación para el gen *18s* y se observó que éste es altamente conservado entre especies filogenéticamente cercanas.

De acuerdo al análisis con el gen *18s* de secuencias disponibles en la base de datos Genbank, la especie *Cancer pagurus* esta filogenéticamente más cercana a *Cancer antennarius* que *C. magister*.

El gen hsp70 es conservado entre especies cercanas, por lo que es posible amplificarlo a partir de primers diseñados para una especie en regiones conservadas de la secuencia, sin embargo, es necesario realizar un análisis más profundo para ver si la secuencia que se amplificó en este trabajo tiene homología con las secuencias para hsp70 de especies cercanas.

8. RECOMENDACIONES:

Como las secuencias obtenidas a partir de los *primers* realizados para *hsp* 70 no mostraron similitud con otras secuencias de *hsp*70, se recomienda realizar un análisis exhaustivo de estas secuencias y realizar nuevos pares de pares de *primers* tomando en cuenta que deben encontrarse en una zona conservada para aumentar las probabilidades de que amplifiquen exitosamente en *Cancer antennarius* o bien probar otros de los otros pares de primers ya diseñados. También se recomienda utilizar *primers* degenerados para tener mayor probabilidad de éxito en la amplificación de la secuencia.
Ahyong, S. T., Lai, J.C.Y., Sharkey, D., Colgan, D.J., y Ng, P.K.L., 2007. Phylogenetics of the brachyuran crabs (Crustacea: Decapoda):The status of Podotremata based on small subunit nuclear ribosomal RNA. Molecular Phylogenetics and Evolution, Vol. 45, pp. 576-586.

Alexzander A. A.,2007. Heat shock proteins: potent mediators of inflammation and immunity. Springer, p. 357.

Applied Biosystems, 2009. DNA Sequencing by Capillary Electrophoresis. Segunda Edición.

Aursnes, I. A., Rishovd, A. L., Karlsen, H. E., y Gjøen, T. 2011. Validation of reference genes for quantitative RT-qPCR studies of gene expression in Atlantic cod (*Gadus morhua I.*) during temperature stress. BioMed Central research notes, Vol. 4(1), p. 104.

Botton, M. L., Pogorzelska, M., Smoral, L., Shehata, A., y Hamilton, M. G. 2006. Thermal biology of horseshoe crab embryos and larvae: a role for heat shock proteins. Journal of Experimental Marine Biology and Ecology, Vol. 336(1), pp. 65-73.

Carrol, J. C., y Winn, R. N., 1989. Species Profiles: Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (Pacific Southwest): BROWN ROCK CRAB, RED ROCK CRAB, AND YELLOW CRAB. Fish and Wildlife Service, Vol. 11.117, p. 26.

Carvacho A., y Bonfil R., El género Cancer L. en el Pacífico mexicano. (Crustacea: Decapoda: Brachyura). Revista Biológica tropical, pp. 37-48.

Cellura C, Toubiana M, Parrinello N, Roch P (2006) HSP70 gene expression in *Mytilus galloprovincialis* hemocytes is triggered by moderate heat shock and *Vibrio anguillarum*, but not by *V-splendidus* or *Micrococcus lysodeikticus*. Developmental and Comparative Immunology, Vol. 30, pp. 984-997.

Cheng P, Liu X, Zhang G, He J (2007) Cloning and expression analysis of a HSP70 gene from Pacific abalone (*Haliotis discus hannai*). Fish & Shellfish Immunology, Vol. 22, pp. 77-87.

Chomczynski, P., y Sacchi, N. 2006. The single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction: twenty-something years on. *Nature protocols*, Vol. *1*(2), pp. 581-585.

Clark, M.S., Fraser, K. P., y Peck, L. S., 2008b. Antarctic marine molluscs do have an HSP70 heat shock response. Cell Stress Society International, Vol. 13, pp.39–49. Clark, M.S., Geissler, P., Waller, C., Fraser, K. P., Barnes, D. K., y Peck, L. S., 2008a. Low heat-shock thresholds in wild Antarctic inter-tidal limpets (Nacella concinna). Cell Stress Society International, Vol. 13, pp.51–58.

Cuculescu, M., Hyde, D. y Bowler, K., 1995. TEMPERATURE ACCLIMATION OF MARINE CRABS:CHANGES IN PLASMA MEMBRANE FLUIDITY ANDLIPID COMPOSITION. Journal of thermal Biology , Vol. 20, pp. 207-222.

Cuculescu, M., Hyde, D. y Bowler, K., 1998. Thermal Tolerance of two species of marine crab, *Cancer pagurus* and *Carcinus maenas*. Journal of thermal Biology, Vol. 23, pp. 107-110.

Eurofins Genomics. DNA Sequencing Troubleshooting Guide.

Eisenberg, E. y Levanon, E., Y., 2013. Human housekeeping genes, revisited. Trends in Genetics, Vol. 29, pp. 569-574.

Farcy E, Serpentini A, Fievet B, Lebel JM (2007) Identification of cDNAs encoding HSP70 and HSP90 in the abalone *Haliotis tuberculata*: Transcriptional induction in response to thermal stress in hemocyte primary culture. Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology, Vol. 146, pp. 540-550.

Fujiwara, H., y Ishikawa, H. 1986. Molecular mechanism of introduction of the hidden break into the 28S rRNA of insects: implication based on structural studies. Nucleic acids research, Vol. *14*(16), pp. 6393-6401.

Grigorio E. Martín, SF. Curso de introducción a la bioinformática: Introducción al diseño de *primers*, p. 3.

Habibi, G., 2012. A comparative phylogenetic analysis of *Theileria* spp. by using two "18S ribosomal RNA" and "*Theileria annulata* merozoite surface antigen" gene sequences. Razi Vaccine & Serum Research Institute, Vol. 68, pp. 47-52

Harrison, M. K., y Crespi, B. J. 1999. Phylogenetics of *Cancer* Crabs (Crustacea: Decapoda: Brachyura). *Molecular Phylogenetics and Evolution*, Vol. *12*(2), pp. 186-199.

Hellemans, J., Mortier, G., Paepe, A. D., Speleman, F., y Vandesompele, J., 2007. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome biology, Vol. 8, p14.

Hoover, D., 2012. Development of a protocol to measure gene expression in the mouse tibia. Faculty of Biomedical and General Engineering Department

California Polytechnic State University, San Luis Obispo, p. 37.

Jenner, R. A., Dhubhghaill, C. N., Ferla, M. P., y Wills, M. A., 2009. Eumalacostracan phylogeny and total evidence: limitations of the usual suspects. BioMed Central Evolutionary Biology, Vol. 9:21, p. 20. Joshi, M., y Deshpande, J. D., 2010. Polymerase Chain Reaction: Methods, Principles and Application. International Journal of Biomedical Research, Vol. 5, pp. 81-97.

Kregel, K.C., 2002. Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. Journal of applied physiology, Vol. 92, pp. 77-86.

Laursen JR, diLiu H, Wu XJ, Yoshino TP (1997) Heat-shock response in a molluscan cell line: Characterization of the response and cloning of an inducible HSP70 cDNA. Journal of Invertebrate Pathology, Vol. 70, pp. 226-233.

Lavrov, D. V., Brown, W. M., y Boore, J. L. (2004). Phylogenetic position of the Pentastomida and (pan) crustacean relationships. Proceedings of the Royal Society of London. Series B: Biological Sciences, Vol. *271*(1538), pp. 537-544.

Lodish, H., Berk, A., Matsudaira, P., Kaiser, C. A., Krieger, M., Scott, M. P., Zipursky, L., y Darnell, J., 2004. Molecular Cell Biology. 5th Ed. Hardcover, p.12-13 y 123-125.

Madden, M., Song, C., Tse, K., y Wong, A., 2004. The Inhibitory Effect of EDTA and Mg2+ on the Activity of NADH Dehydrogenase in Lysozyme Lysis. Journal of Experimental Microbiology and Immunology, Vol. 5, pp. 8-15.

Mallat, J. M., Garey, J. R., y Shultz, J. W., 2003. Ecdysozoan phylogeny and Bayesian inference: first use of nearly complete 28S and 18S rRNA gene sequences to classify the arthropods and their kin. Molecular Phylogenetics and Evolution, p. 14.

Meyer, A., Todt, C., Mikkelsen, N. T., y Lieb, B. 2010. Fast evolving 18S rRNA sequences from Solenogastres (Mollusca) resist standard PCR amplification and give new insights into mollusk substitution rate heterogeneity. BioMed Central Evolutionary Biology, Vol. 10(1), pp. 70-82.

Madeira, D., 2012. Thermal tolerance of the crab *Pachygrapsus marmoratus*: intraspecific differences at a physiological (CTMax) and molecular level (Hsp70). Cell Stress Society International, Vol. 17, pp. 1–10.

Marshall, O. J. (2004). PerlPrimer: cross-platform, graphical primer design for standard, bisulphite and real-time PCR. Bioinformatics (Oxford, England), 20(15), 2471–2.

Martínez, M. P., Martínez, L. C., y Ramos R. E., 2009. Dinámica del crecimiento de peces y crustáceos. Revista Electronica de Veterinaria, 10, pp.1–16.

Masek, T., Vopalensky, V., Suchomelova, P., y Pospisek, M. 2005. Denaturing RNA electrophoresis in TAE agarose gels. *Analytical biochemistry*, Vol. 336(1), pp. 46-50. Padilla, S., 2014. Efecto de la temperature de aclimatación en el comportamiento termotermorregulador, y la tolerancia térmica, sobre las respuestas fisiológicas, metabólicas y hematológicas de *Cancer antennarius* (Stimpson, 1856). Tesis de maestría. CICESE.

Paolacci, A. R., Tanzarella, O. A., Porceddu, E., y Ciaffi, M. 2009. Identification and validation of reference genes for quantitative RT-PCR normalization in wheat. BioMed Central Molecular Biology, Vol. *10*(1), p. 11.

Qian, Z., Liu, X., Wang, L., Wang, X., Li, Y., Xiang, J., y Wang, P., 2012. Gene expression profiles of four heat shock proteins in response to different acute stresses in shrimp, *Litopenaeus vannamei*. *Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology*, Vol. *156*(3), pp. 211-220.

Ramírez, J. B., Vargas, G. A., Tovilla, C. Z., y Fragoso, J. M., 2013. Polimorfismos de un solo nucleótido (SNP): implicaciones funcionales de los SNP reguladores (rSNP) y de los SNP-ARN estructurales (srSNP) en enfermedades complejas. Órgano Oficial de la Academia Nacional de Medicina de México, Vol. 149, pp. 220-228.

Raymond, P., Cedomil, L., Horst, O. y Dirk, W., 2012. Multiple functions of the crustacean gill: osmotic/ionic regulation, acid-base balance, ammonia excretion, and bioaccumulation of toxic metals. Frontiers in Physiology, Vol. 3, pp. 1-33.

Regier, J. C., y Kambic, R. E., 2005. Pancrustacean phylogeny: hexapods are terrestrial crustaceans and maxillopods are not monophyletic. The Royal Society, Vol. 272, pp. 395-401. Sambrook J., Russell, D. W., y Russell, D. W., 2001. Molecular Cloning: A Laboratory Manual . Cold Spring Harbor, p. 753.

Schrader, C., Schielke, A., Ellerbroek, L., y Johne, R. 2012. PCR inhibitors–occurrence, properties and removal. Journal of Applied Microbiology, Vol. *113*(5), pp. 1014-1026.

Secretaria de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación, 2004. Carta nacional pesquera. Diario Oficial, Segunda sección

Seddon, A., Booth, P. J., 2004. Membrane proteins, lipids and detergents: not just a soap opera. Biochimica et Biophysica Acta, Vol. 1666, pp. 105-117.

Somero, G. N. 1995. Proteins and temperature. Annual Review of Physiology, Vol. 57, pp. 43-68.

Spears, T., Abele, L. G., y Kim, W. 1992. The Monophyly of Brachyuran Crabs: A Phylogenetic Study Based on 18s rRNÅ. *Systematic Biology*, Vol. *41*(4), pp. 446-461.

Spears, T., y Abele, L. G., 1997. Crustacean phylogeny inferred from 18S rDNA. Systematic Association, Vol. 55, p. 18.

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., y Kumar, S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular biology and evolution, Vol. 28(10), p. 2731–9.

Tan, S. C., y Yiap, B. C. 2009. DNA, RNA, and Protein Extraction: The Past and The Present. Journal of Biomedicine and Biotechnology, Vol. 2009, p.10.

Taylor, S., Wakem, M., Dijkman, G., Alsarraj, M., y Nguyen, M. 2010. A practical approach to RT-qPCR—publishing data that conform to the MIQE guidelines. Methods, Vol. *50*(4), pp. S1-S5.

Thermo Scientific 2012. NanoDrop Lite User Guide. 269-275200 Revision A.

Tomanek, L. y Somero, G.N., 2002. Interspecific- and acclimationinduced variation in levels of heat-shock proteins 70 (*hsp70*) and 90 (*hsp90*) and heat-shock transcription factor-1 (HSF1) in congeneric marine snails (genus *Tegula*): implications for regulation of hsp gene expression. The Journal of Experimental Biology, Vol. 205, pp.677–685.

Tomanek, L. y Zuzow, M.J., 2010. The proteomic response of the mussel congeners *Mytilus galloprovincialis* and *M. trossulus* to acute heat stress: implications for thermal tolerance limits and metabolic costs of thermal stress. The Journal of experimental biology, Vol. 213, pp. 3559-3574.

TRI Reagent® Solution. RNA / DNA / Protein Isolation Reagent. Applied Biosystems, p.12.

Tristán, A. L., Monteforte, M., Amador, E. S., y Ramírez, M. H., 1992. Distribución, abundancia y reproducción del cangrejo rojo *Caneer johngarthi* (Decapoda: Cancridae), en Baja California Sur, México. Revista de Biología Tropical, Vol. 40 (2), pp. 199-207.

Turbeville, J. M., Pfeifer, D. M., Field, K. G., y Raff, R. A., 1991. The Phylogenetic Status of Arthropods, as Inferred from 18S rRNA Sequences. Molecular Biology Evolution, Vol. 8(5), pp. 669-686.

Tutar , Y., Song, Y. y Masison, D., 2005. Primate Chaperones Hsc70 (Constitutive) and Hsp70 (Induced) Differ Functionally in Supporting Growth and Prion Propagation in *Saccharomyces cerevisiae*. Laboratory of Biochemistry and Genetics, Vol. 20892, pp. 851.

Hill, R. W. y Wyse, G. A., 2004. Fisiología Animal. Ed. Médica Panamericana, p. 241-243.

10. ANEXOS:

ANEXO 1. Extracción de DNA

- Secado de tejido (30-50 mg por tubo) por 2 horas en un tubo abierto.
 Nota: El tejido se puede dejar a -20°C por la noche.
- II. Agregar 200 µl de solución SNET (solución de SDS y EDTA) y comenzar a homogenizar el tejido con un pistilo para tubos de 1.5 ml (alrededor de 15 min de homogenización mecánica por tubo).
- III. Agregar otros 200 μl de solución SNET a cada tubo, agregar 4 μl RNasa
 (100 μg/ml) y 8 μl de proteinasa K (400 μg/ml).
- IV. Incubar a 60°C de 1-2 hrs agitando cada 10 min.
- V. Agregar 300 µl de NaCl 6M, usar vortex e incubar a temperatura ambiente por 5 min.
- VI. Centrifugar a temperatura ambiente a 10,000 g por 30 min. (10,200 rmp).
- VII. Transferir la fase acuosa a un tubo nuevo (alrededor de 600 µl).
- VIII. Agregar 600 µl de isopropanol e incubar a -80°C por 10 min.
- IX. Centrifugar a 12,000 g (11,200 rpm) a temperatura ambiente por 15 min.
- X. Descartar sobrenadante y agregar 1 ml de etanol al 70%.
- XI. Centrifugar 5 min. A la misma velocidad.
- XII. Retirar sobrenadante, secar y resuspender en 30 µl de buffer TE.

ANEXO 2. Electroforesis en geles de agarosa

- I. Verter 25 ml de TAE en una probeta.
- II. Vaciar el TAE a un frasco de fondo plano (con capacidad para la solución final).
- III. Agregar 0.45 g de agarosa al frasco que contiene 25 ml de TAE (Agarosa 1.5%) Nota: dependiendo del % al cual se quiere realizar el gel se utiliza la siguiente fórmula para saber la cantidad de agarosa que se va a agregar: X (cantidad de agarosa en gramos)= (ml de TAE/ % de agarosa requerido.
 Ejemplo: X= 30ml / .015 X = 0.45
- IV. Agitar el frasco con la mano y meter al microondas por 45 seg (o hasta que la solución esté completamente homogénea y traslúcida), se puede poner tapa suelta al frasco ya que la agarosa tiende a hervir rápido.
- V. Una vez fuera del microondas, se deja enfriar y se agregan los 5ml restantes de TAE para que enfríe más rápido.
- VI. Una vez enfriado se agregan 3µl de Gel Red (Relación 1:10,000) y se revuelve agitando el frasco con la mano.
- VII. Verter el gel en la cámara de electroforesis, con su peine respectivo para crear los pozos adecuados y esperar a que solidifique.

- VIII. Una vez que el gel esté listo agregue suficiente buffer (TAE) a la cámara para cubrir el gel.
- IX. Mezclar las muestras de RNA con buffer 6X de carga (Relación 10 µl de muestra lleva 2.4 µl de buffer de carga).
- X. Lentamente verter la muestra dentro del pozo indicado cambiando la punta por cada muestra para evitar contaminación entre muestras.
- XI. Cierre la cámara y conecte los cables de corriente para que el RNA corra hacia el lado positivo (65V x 50 min).

ANEXO 3. Homogenización

- I. Limpiar el área de trabajo con RNAZAP o cloro.
- II. Pesar 100 mg de perlas para maceración por cada muestra y colocarlos en un tubo Eppendorf vacío (libre de RNasas).
- III. Agregar 1ml de Trizol (Tiocianato de guanidina fenol) al tubo Eppendorf con las perlas.
- IV. Colocar la muestra en el tubo eppendorf con las perlas (100 mg de muestra).
- V. Homogenizar el tejido durante 40 seg a una velocidad de 2,500 rpm (o hasta quel a muestra se vea homogénea).
- VI. Centrifugar las muestras a 14,000 rpm por 5 min a 4°C. (mantener frio en hielo).
- VII. Transferir la fase superior a un nuevo tubo Eppendorf evitando las perlas y el tejido restante (tratando de obtener 850µl aprox.)
- VIII. Incubar las muestras 5 min a temperatura ambiente.

ANEXO 4. Extracción de RNA

- Agregue 200µl de cloroformo por cada ml de trizol usado, cerrar los tubos y agitar vigorosamente por 15 seg.
- II. Incubar a temperatura ambiente por 5-10 min.
- III. Centrifugue a 14,000 rpm por 5 min a 4°C (NOTA: centrifugar a más de 8°C puede causar que algo de DNA se vaya hacia la fase acuosa)
- IV. Transferir la fase acuosa o sobrenadante (la parte de arriba, sin color, 450 µl aproximadamente) a un tubo nuevo Eppendorf sin tomar parte de la fase intermedia.

Precipitación RNA y lavado:

- V. Agregar 500 µl de etanol al 100% en el tubo nuevo con el sobrenadante mezclando por inversión 5 veces por cada tubo.
- VI. Incubar las muestras a -80°C por 10 min.
- VII. Centrifugar a 14,000 rpm por 15 min y descartar el sobrenadante sin disturbar el pellet.
- VIII. Agregar 1 ml de etanol por cada ml de trizol al 75%.
- IX. Incubar en hielo por 10 min.

- X. Centrifugar a 14,000 rpm por 5 min a 4°C y descartar el sobrenadante.
- XI. Repetir pasos VIII-X dos veces más.
- XII. Una vez descartado el sobrenadante, dejar secar la muestra a temperatura ambiente para evaporar el etanol (dejar los tubos abiertos recargados al revés en algún lugar seguro con papel secante de manera que escurra y evapore el etanol hacia afuera).
- XIII. Resuspender y disolver el pellet de ARN en agua DEPC (pellet de 3-5 mm requieren 300-500 µl de agua DEPC).

ANEXO 5. Tratamiento con DNAsa:

Cálculos realizados para un ejemplo con 7 µg de RNA.

Protocolo RQ1 RNase-Free DNase (Cat.# M6101) con algunas modificaciones (PROMEGA).

 Tomar la cantidad deseada de RNA tomando en cuenta que para 7 μg de RNA a una concentración de 0.5 μg/μl se toman 14 μl de muestra y se agrega (para un volumen final de 25 μl):

RQ DNAsa (misma cantidad de µg de RNA)	7 µl
RQI Buffer de reacción 10x (1µl/vol. final)	2.5 µl
H ₂ O libre de nucleasas +RNA	1.5 µl 14 µl
TOTAL	25 µl

- II. Incubar a 37°C durante 30 min.
- III. Centrifugar rápido (puede ser en minicentrífuga) y colocar en hielo inmediatamente.
- IV. Agregar 2.5 µl de solución stop (relación 1 µl de solución stop por cada 10 µl de volumen en el tubo).
- V. Incubar 65°C durante 10 min.
- VI. Centrifugar rápido y colocar en hielo inmediatamente.

Precipitacion y purificación de la muestra

- Agregar 1/10 volumen final de acetato de sodio, para 27.5 μl (25 μl + 2.5 μl) se agregan 2.75 μl y agitar el tubo con cuidado.
- II. Adicionar 3 volúmenes finales de etanol al 100%, lo cual equivale a 82.5µl y agitar con cuidado.
- III. Precipitar a -20°C por 1 hr.

- IV. Centrifugar a 12,000 rpm a -4°C por 10 min.
- V. Tirar el sobrenadante en otro tubo.
- VI. Lavar el pellet con etanol al 75% (200 µl por tubo) y agitar cuidadosamente.
- VII. Incubar en hielo por 10 min.
- VIII. Centrifugar a 9,000 rpm a -4°C por 10 min.
 - IX. Eliminar sobrenadante lo mejor posible.
 - X. Repetir pasos 6 al 9.
 - XI. Secar el pellet.
- XII. Para 7 µg, resuspender en 14 µl de agua tratada con DEPC.
- XIII. Guardar las muestras a -20°C.

ANEXO 6. cDNA:

Protocolo: Omniscript® Reverse Transcription Handbook (QIAGEN).

 Preparar la siguiente solución máster mix para la reacción de transcriptasa reversa (la siguiente tabla muestra el volumen de cada

componente para una muestra mientras cada reactivo esté a la

concentración indicada).

Component	Volume/reaction	n Final concentration
Master mix		
10x Buffer RT	2.0 µl	1x
dNTP Mix (5 mM each dNTP)	2.0 µl	0.5 mM each dNTP
Oligo-dT primer (10 µM)†	2.0 µl	1 µM†
RNase inhibitor (10 units/µl)‡	1.0 µl	10 units (per 20 µl reaction)
Omniscript Reverse Transcriptase	ε 1.0 μl	4 units (per 20 µl reaction)
RNase-free water	Variable	
Template RNA		
Template RNA, added at step 5	Variable	Up to 2 µg [§] (per 20 µl reaction)
Total volume	20.0 µl	-

Tabla del protocolo Omniscript Reverse Transcriptase.

- II. Si se hace máster mix para varias muestras, una vez terminado el máster mix distribuir 8 µl del mismo para cada tubo.
- III. Igualar a 20 µl con agua y RNA (1 µg).
- IV. Incubar a 37°C por 60 min.

ANEXO 7. Información completa de primers realizados

Primers diseñados por Diego Ibarra

Primers 18S (Blast Cancer pagurus)	Primer F usado en la simulación	Antisense	Posición en
Fcp3: GGAATAATGGAATAGGACCTCGG		N/A	817-839
Rcp3: GCAATTGTCTCCCATGAACG	N/A	CGTTCATGGGAGACAATTGC	1581-1600
Primers hsp 70 (Blast de Scylla paramosain)	Primer F usado en la simulación	Antisense	Posición en
Fsp2: TTCAAGCGAAAGTACAAGAAGG		N/A	843-864
Rsp2: GCCCTGGAGTCTTACTGTTTC	N/A	GAAACAGTAAGACTCCAGGGC	1731-1751
Primers 18s (Blast de Cancer pagurus)	Primer F usado en la simulación	Antisense	Posición en
Fcp2: CAATGGCTATAACGGGTAACG		N/A	338-358
Rcp2: GCTAGAGGTGAAATTCTTGGACC	N/A	GGTCCAAGAATTTCACCTCTAGC	911-934
Primers 18s (Blast de Cancer pagurus)	Primer F usado en la simulación	Antisense	Posición en
F: CCGCCTCTTTCAAGTGTCTG		N/A	252
R: GGAAGGATTGACAGATTGAGAGC	N/A	GCTCTCAATCTGTCAATCCTTCC	1229
Primers 18s (Blast de Cancer pagurus)	Primer F usado en la simulación	Antisense	Posición en
F: GAATCTGAATAACTTGTCGCTG		N/A	207
R: CCGTTCTTAGTTGGTGGAG	N/A	CTCCACCAACTAAGAACGG	1280

Continuación

Distancia entre primers PB	Tm	% GC	Uniones fuertes kcal/mol	Dimeros extensibles fuertes
742	60.57	47	Dimero de -2.74	N/A
	60.02	50		
Distancia entre primers PB	Tm	% GC	Uniones fuertes kcal/mol	Dimeros extensibles fuertes
867	59.36	40	Dimero de -2.65	N/A
	60.83	52		
Distancia entre primers PB	Tm	% GC	Uniones fuertes kcal/mol	Dimeros extensibles fuertes
533	59.34	47		Dimero -2.59
	61.45	47		
Distancia entre primers PB	Tm	% GC	Uniones fuertes kcal/mol	Dimeros extensibles fuertes
977	61.43		N/A	N/A
	61.51			

Distancia entre primers PB	Tm	% GC	Uniones fuertes kcal/mol	Dimeros extensibles fuertes
1073	57.92		N/A	N/A
	57.92			

Primers diseñados con la ayuda de la Dra. Norma Estrada.

HSP 70 Norma	Primer F usado en la	Antisens	Posicion en la	Р
	Simulación	e	Secuencia	Б
FW HSP70	N/A	N/A		19
GCATGGCAAGGTGGAAATC				
RV HSP70	N/A			20
GACAAAGGCGCTACATCCAG				

Distancia entre primers PB	Tm	% GC	Uniones fuertes kcal/mol	Dimeros extensibles fuertes
1134	59.95	52		N/A
	61.57	55	Dimero bajo	

Primers degenerados diseñados a partir de una secuencia consenso de especies cercanas a *Cancer antennarius* por Diego Ibarra

Primers Degenerados	Primer F usado en la simulación	Antisense	Posicion en la secuencia	P B
F3HSP70: CGTRGGTGTSTTCCAGCAT	CGTGGGTGTTTTCCAG CAT	N/A	166-184	1 9
R2HSP70: CGVAAGTACAAGAAGGAYCC	N/A	GGGTCCTTCTTGTACT TCCG	854-873	2 0
F1HSP70: CAGCATSSCAAGGTGGARAT	CAGCATGGCAAGGTG GAGAT	N/A	179-198	2 0
R3HSP70: AGCGVAAGTACAAGAAGGAYC C	N/A	GGGTCCTTCTTGTACT TCCGCT	852-873	2 2

Continuación

Distancia entre primers PB	Tm	% GC	Uniones fuertes kcal/mol	Dimeros extensibles fuertes
707	61.38	55.56		
	60.23	55		N/A
694	63.07	55	Dimero de -3.12	N/A
	64.5	54.55		

ANEXO 8. PCR punto final

Protocolo: **GoTaq[®] Flexi DNA Polymerase (PROMEGA)** con algunas modificaciones.

T. Preparar el siguiente master mix para una muestra (volumen mar 25 µ).
--

Receta p/ una muestra [inicial]	Cantidad µl	[final]
Go Taq Flexi Buffer 5x	5	1x
MgCl ₂ 25 mM	4	4 mM
dNTP 10 mM	1	0.4 mM
F(10 μM)	1	0.4 μM
R(10 μM)	1	0.4 μM
Go Taq DNA pol. (5 U/µl)	0.25	1.25 U
H ₂ O (variable)	9.75	
cDNA (variable)	3	

Nota: el DNA o cDNA se pondrá en su respectivo tubo una vez que el máster mix haya sido distribuido a cada tubo por muestra.

II. Colocar los tubos listos en el PCR utilizando el siguiente programa:

Programa de PCR punto final

Stage1	Stage2	Stage3
Ciclos x 1	Ciclos x 30	Ciclos x1
95°C x 2 min.	95°C por 1 min	72°C x 5 min (5-10 min)
	46 y 48°C x 1 min	4°C x ∞
	72°C x 1.5 min	

Nota: La cantidad o concentración de reactivos utilizada, así como el programa para PCR se modificó dependiendo de la estandarización individual de cada par de *primers* utilizados.

III. Retirar los tubos de PCR y mantenerlos a -4°C ó -20°C.

Concentración de reactivos final y programa final utilizado para ambos genes:

Máster Mix para una muestra en DNA (para DNA se utilizaron 14 μ l de máster mix por tubo).

Reactivos	Cantidad (µl)	Conc. Final
Go taq buffer 5x	3.0	1x
MgCl₂ 25 mM	2.4	4 mM
dNTP 10 mM	0.3	0.2 mM
F(10 μM)	0.3	0.2 μΜ
R(10 μM)	0.3	0.2 μΜ
Go taq DNA pol. (5 U/μl)	0.1	0.5U
H ₂ O	7.9	

Máster Mix para una muestra en cDNA (para DNA se utilizan 13 µl de máster mix por tubo).

Reactivos	Cantidad (µl)	Conc. Final
Go taq buffer 5x	3	1x
MgCl ₂ 25 mM	2.4	4 mM
dNTP 10 mM	0.3	0.2 mM
F(10 μM)	0.3	0.2 μΜ
R(10 μM)	0.3	0.2 μΜ
Go taq DNA pol. (5 U/μl)	0.1	
H ₂ O	6.9	

Programa

Stage1	Stage2	Stage3
Ciclos x 1	Ciclos x 35	Ciclos x 1
95°C x 2 min	95°C por 30 seg	72°C x 5 min
	55°C x 1 min	4°C x ∞
	72°C x 1 min	

No.	No.	Temp.	Codigo	Sexo
1	Org.	25	c1	m
2	1 2	25	c2	h
2	2	25	c2	h
	5 1	25	c1	h
5	5	25	c5	h
6	5	25	F	h
7	7	25	F	h
8	, 8	25	F	h
9	9	25	F	h
10	10	25	F	h
11	11	25	F	h
12	12	25	F	h
13	13	25	E	h
14	14	25	- е	h
15	15	25	e	h
16	1	16	c1	h
17	2	16	c2	h
18	3	16	с3	h
19	4	16	c4	h
20	5	16	е	h
21	6	16	е	h
22	7	16	е	h
23	8	16	е	h
24	9	16	е	h
25	10	16	е	h
26	11	16	е	h
27	12	16	е	h
28	13	16	е	h
29	1	22	c1	h
30	2	22	c2	h
31	3	22	c3	h
32	4	22	c4	h
33	5	22	е	h
34	6	22	е	h
35	7	22	е	h
36	8	22	c5	h
37	9	22	е	h
38	10	22	е	h
39	11	22	е	h

ANEXO 9. Tabla de muestreo de Cancer antennarius

40	12	22	e	h
41	13	22	е	h
42	14	22	е	h
43	15	22	е	h
44	16	22	е	h
45	17	22	е	h
46	1	19	c1	h
47	2	19	c2	h
48	3	19	с3	h
49	4	19	c4	h
50	5	19	е	h
51	6	19	е	h
52	7	19	е	h
53	8	19	c5	h
54	9	19	е	h
55	10	19	е	h
56	11	19	е	h
57	12	19	е	m
58	13	19	е	h
59	14	19	е	h
60	15	19	е	m
61	16	19	е	h
62	17	19	е	h

Clave org.	Condición	Temp. Ac.	тс М	Sex o	Tejid o	Fecha de extracción	Cantidad de tejido (mg)	Fase acuosa µl
1	control	25	na	m	В	18-Apr	100	500
1	control	25	na	m	М	18-Apr	100	500
10	experimental	25		h	В	18-Apr	100	600
10	experimental	25		h	М	18-Apr	100	600
13	experimental	25		h	В	18-Apr	100	400
13	experimental	25		h	М	18-Apr	100	600
3	control	16		h	В	16-Apr	100	500
3	control	16		h	М	16-Apr	100	500
8	experimental	16		h	В	16-Apr	100	500
8	experimental	16		h	М	16-Apr	100	500
12	experimental	16		h	В	16-Apr	100	500
12	experimental	16		h	М	16-Apr	100	500
2	control	22		h	В	23-Apr	100	500
2	control	22		h	М	23-Apr	100	500
10	experimental	22		h	В	23-Apr	100	500
10	experimental	22		h	М	23-Apr	100	500
16	experimental	22		h	В	23-Apr	100	500
16	experimental	22		h	М	23-Apr	100	500
4	control	19		h	В	25-Apr	100	500
4	control	19		h	М	25-Apr	100	500
14	experimental	19		h	В	25-Apr	100	500
14	experimental	19		h	М	25-Apr	100	500
15	experimental	19		m	В	25-Apr	100	500
15	experimental	19		m	М	25-Apr	100	500

ANEXO 10. Tabla de extracción de músculo y branquia de Cancer antennarius

Continuación

Pellet (color y tamano)	Volumen resuspendido ul	260/280	ng/ul	RNA total ug
Blanco y pequeño	80	2.0	302.4	24.19
Blanco y pequeño	80	2.05	585.7	46.86
Semi transparente y pequeño	80	2.06	334	26.72
Obscuro y pequeño	80	1.94	544.9	43.59
Blanco y pequeño	80	2.0	224.5	17.96
Blanco y pequeño	80	2.08	692.8	55.42
Blanco y pequeño	80	1.9	373.5	29.88
Blanco y pequeño	80	2.0	288.1	23.05
Blanco y pequeño	80	2.03	686.2	54.90
Blanco y pequeño	80	1.95	405.4	32.43
Blanco y pequeño	80	1.81	345.8	27.66
Blanco y pequeño	80	2.0	226.3	18.1
Blanco y pequeño	80	1.48	204.1	16.33
Blanco y pequeño	80	1.97	301.1	24.09
Transparente y pequeño	80	1.83	286.9	22.95
Transparente y pequeño	80	2.05	574	45.92
Obscuro (cafe) y pequeño	80	1.88	398.5	31.88
Transparente y pequeño	80	2.04	314.4	25.15
Blanco y pequeño	80	1.92	220.2	17.62
Transparente y pequeño	80	2.06	225.7	18.06
Obscuro y pequeño	80	1.95	316.9	25.35
Transparente y pequeño	80	2.08	221.6	17.73
Blanco y pequeño	80	1.95	292.6	23.41
Blanco y pequeño	80	2.08	627.9	50.23

ANEXO 11. Secuencia obtenida del gen 18S después de la secuenciación

CCGGCCTTTTTTTACAGTGTCTGNTATCAGCTTTCGATGTAGGTTATACGCT ACAATGGCTATAACGGTAACGGGGAATCAGGGTTCGATTCCGGAGAGGGGA GCTGAGAAACGGCTACCACATCTAAGGAAGGCAGCAGGCACGCAAATTAC TCCGAGGCCTCGCAATCGGAATGAGTACACTTTAAATCCTTTAACGAGGAC CCATTGGAGGGCAAGTCTGGTGCCAGCAGCCGCGGTAATTCCAGCTCCAA TAGCGTATATTAAAGTTGTTGCGGTTAAAAAGCTCGTAGTTGGATTTCAGTT CTGGACTGACGGTTCACCGCCCGGTGCATACTGTCACGCTCCGAACAGCC ACAACAGCCCGCTGGCTCGCACGGGGTGCTCTTCATCGAGTGTCCCGCGT GGCCGGCAGAGTTTACTTTGAAAAAATTAGAGTGCTCAAAGCAGGCTACAC TGACGGCCTGAATGCCTATGCATGGAATAATGGAATAGGACCTCGGTTCTA TTTTGTCGGTTTTCTGAACCCGAGGTAATGACTAATAGGAACAGGCGGGGG CATTCGTATTGCGACGCTAGAGGTGAAATTCTTGGACCGTCGCAAGACGAA CTACTGCGAAAGCATTTGCCAAGGATGTTTTCATTAATCAAGAACGAAAGTT AGAGGTTCGAAGGCGATCAGATACCGCCCTAGTTCTAACCATAAACGATGC TGACCAGCGATCCGCCGGCGTTATTCCCATGACCCGGCGGGCAGCTTCCG GGAAACCAAAGTCTTTGGGTTCCGGGGGGAAGTATGGTTGCAAAGCTGAAA CTTAAAGGAATTGACGGAAGGGCACCACCAGGAGTGGAGCCTGCGGCTTA ATTGACTCAACACGGGAACCTCCGCCCGGG

ANEXO 12. Alineamiento completo de las secuencias del gen 18S

Gaetice_depressus ---AGTCATATGCTTGTCTCAAAGATTAAGCCATGCATGTCTAAGTACAAGCCGACTTAA Gaetice_depressus GGCGAAACCGCGAATGGCTCATTAAATCAGCTATGATTCATTGGATCTGTACCCACACTT Cancer_pagurus GGCGAAACCGCGAATGGCTCATTAAATCAGCTATGATTCATTGGATCTGTACCCACACTT
 Cancer_pagurus
 GGCGAAACCGCGAATGGCTCATTAAATCAGCTATGATTCATTGGATCTGTACCCACACTT

 Carcinoplax_suruguensis
 GGCGAAACCGCGAATGGCTCATTAAATCAGCTATGATTCATTGGATCTGTACCCACACTT

 Dairoides
 GGCGAAACCGCGAATGGCTCATTAAATCAGCTATGATTCATTGGATCTGTACCCACACTT

 Hypothalassia_armata
 GGCGAAACCGCGAATGGCTCATTAAATCAGCTATGATTCATTGGATCTGTACCCACACCTT

 Ebalia_tuberculosa
 GGCGAAACCGCGAATGGCTCATTAAATCAGCTATGATTCATTGGATCTGTACCCACACTT

 Eriphides_hispida
 GGCGAAACCGCGGAATGGCTCATTAAATCAGCTATGATTCATTGGATCTGTACCCACACTT

 Gaetice_depressus
 ACTTGGATAACTGTGGTAATTCTAGAGCTAATACATGCACCACGTCTCTGACCGCAAGGG

 Cancer_pagurus
 ACTTGGATAACTGTGGTAATTCTAGAGCTAATACATGCACCACGTCTCTGACCGCAAGGG

 Carcinoplax_suruguensis
 ACTTGGATAACTGTGGTAATTCTAGAGCTAATACATGCACCACGTCTCTGACCGCAAGGG

 Dairoides
 ACTTGGATAACTGTGGTAATTCTAGAGCTAATACATGCACCACGTCTCTGACCGCAAGGG

 Hypothalassia_armata
 ACTTGGATAACTGTGGTAATTCTAGAGCTAATACATGCACCACGTCTCTGACCGCAAGGG

 Ebalia_tuberculosa
 ACTTGGATAACTGTGGTAATTCTAGAGCTAATACATGCACCACATCTCTGACCGCAAGGG

 Eriphides_hispida
 ACTTGGATAACTGTGGTAATTCTAGAGCTAATACATGCACCACGTCTCTGACCGCAAGGG
 Gaetice_depressus AAGAGCGCTTTTATTAGTTCAAAACCGGTCGGTCTTCGGTCCGTCACCCCACCGTGTTGA Cancer_pagurus AAGAGCGCTTTTATTAGTTCAAAAACCGGTCGGACTTCGGTCCGTCACCCCACCGTGTTGA AAGAGCGCTTTTATTAGTTCAAAACCGGTCGGGCCTCGGTCCGTCACCCCACCGTGTTGA AAGAGCGCTTTTATTAGTTCAAAACCGGTCGGGCCTCGGTCCGTCACCCCACCGTGTTGA Hypothalassiu____ Ebalia_tuberculosa AAGAGCGCTTTTATTAGTTCAAAACCGGTCGGGCCTCGGTCCGTCACCCCACCGTGTTGA

Gaetice_depressus Cancer_pagurus Carcinoplax_suruguensis Dairoides Hypothalassia_armata Ebalia_tuberculosa Eriphides_hispida

Gaetice_depressus Cancer_pagurus Carcinoplax_suruguensis Dairoides Hypothalassia_armata Ebalia_tuberculosa Eriphides hispida

Gaetice_depressus Cancer_pagurus Carcinoplax_suruguensis Dairoides Hypothalassia_armata Ebalia_tuberculosa Eriphides_hispida

Gaetice_depressus Cancer_pagurus Carcinoplax_suruguensis Dairoides Hypothalassia_armata Ebalia_tuberculosa Eriphides_hispida ATCTGAATAACTTGTCGCTGAGCGCACGGTCTCTGCACCGGCGCCGCCTCTTCAAGTGT ATCTGAATAACTTGTCGCTGAGCGCACGGTCTCCGCACCGGCGCCGCCTCTTCAAGTGT ATCTGAATAACTTGTCGCTGAGCGCACGGTCTCCGCACCGGCGCCGCCTCTTCAAGTGT ATCTGAATAACTTGTCGCTGAGCGCACGGTCTCCGCACCGGCGCCGCCTCTTTCAAGTGT ATCTGAATAACTTGTCGCTGAGCGCACGGTCTCCGCACCGGCGCCGCCTCTTTCAAGTGT ATCTGAATAACTTGTCGCTGAGCGCACGGTCTCCGCACCGGCGCCGCCTCTTTCAAGTGT ATCTGAATAACTTGTCGCTGAGCGCACGGTCTCCGCACCGGCGCCGCCTCTTTCAAGTGT ATCTGAATAACTTGTCGCTGAGCGCACGGTCTCCGCACCGGCGCCGCCTCTTTCAAGTGT ATCTGAATAACTTGTCGCTGAGCGCACGGTCTCCGCACCGGCGCCCCCTTTTCAAGTGT ATCTGAATAACTTGTCGCTGAGCGCACGGTCTCCGCACCGGCGCCCCCTTTCAAGTGT

CTGCCTTATCAGCTTTCGATTGTAGGTTATACGCCTACAATGGCTATAACGGGTAACGGG CTGCCTTATCAGCTTTCGATTGTAGGTTATACGCCTACAATGGCTATAACGGGTAACGGG CTGCCTTATCAGCTTTCGATTGTAGGTTATACGCCTACAATGGCTATAACGGGTAACGGG CTGCCTTATCAGCTTTCGATTGTAGGTTATACGCCTACAATGGCTATAACGGGTAACGGG CTGCCTTATCAGCTTTCGATTGTAGGTTATACGCCTACAATGGCTATAACGGGTAACGGG CTGCCTTATCAGCTTTCGATTGTAGGTTATACGCCTACAATGGCTATAACGGGTAACGGG CTGCCTTATCAGCTTTCGATTGTAGGTTATACGCCTACAATGGCTATAACGGGTAACGGG CTGCCTTATCAGCTTTCGATTGTAGGTTATACGCCTACAATGGCTATAACGGGTAACGGG

CAGCAGGCACGCAAATTACCCACTCCCGGCACGGGAGGTAGTGACGAAAATAACGATG CAGCAGGCACGCAAATTACCCACTCCCGGCACGGGAGGTAGTGACGAAAATAACGATG CAGCAGGCACGCAAATTACCCACTCCCGGCACGGGGAGGTAGTGACGAAAATAACGATG CAGCAGGCACGCAAATTACCCACTCCCGGCACGGGGAGGTAGTGACGAAAATAACGATG CAGCAGGCACGCAAATTACCCACTCCCGGCACGGGAGGTAGTGACGAAAATAACGATG CAGCAGGCACGCAAATTACCCACTCCCGGCACGGGAGGTAGTGACGAAAAATAACGATG CAGCAGGCACGCAAATTACCCACTCCCGGCACGGGAGGTAGTGACGAAAATAACGATG CAGCAGGCACGCAAATTACCCACTCCCGGCACGGGAGGTAGTGACGAAAATAACGATG

CGAGACTCATCCGAGGCCTCGCAATCGGAATGAGTACACTTTAAATCCTTTAACGAGGAT CGAGACTCATCCGAGGCCTCGCAATCGGAATGAGTACACTTTAAATCCTTTAACGAGGAT CGAGACTCATCCGAGGCCTCGCAATCGGAATGAGTACACTTTAAATCCTTTAACGAGGAT CGAGACTCATCCGAGGCCTCGCAATCGGAATGAGTACACTTTAAATCCTTTAACGAGGAT CGAGACTCATCCGAGGCCTCGCAATCGGAATGAGTACACTTTAAATCCTTTAACGAGGAT CGAGACTCATCCGAGGCCTCGCAATCGGAATGAGTACACTTTAAATCCTTTAACGAGGAT CGAGACTCATCCGAGGCCTCGCAATCGGAATGAGTACACTTTAAATCCTTTAACGAGGAT

CTATTGGAGGGCAAGTCTGGTGCCAGCAGCGCGGGTAATTCCAGCTCCAATAGCGTATAT CTATTGGAGGGCAAGTCTGGTGCCAGCAGCGGCGGGTAATTCCAGCTCCAATAGCGTATAT CTATTGGAGGGCAAGTCTGGTGCCAGCAGCGCGGGTAATTCCAGCTCCAATAGCGTATAT CTATTGGAGGGCAAGTCTGGTGCCAGCAGCGCGGGTAATTCCAGCTCCAATAGCGTATAT CTATTGGAGGGCAAGTCTGGTGCCAGCAGCGCGCGGTAATTCCAGCTCCAATAGCGTATAT CTATTGGAGGGCAAGTCTGGTGCCAGCAGCGCGCGGTAATTCCAGCTCCAATAGCGTATAT CTATTGGAGGGCAAGTCTGGTGCCAGCAGCGCGCGGTAATTCCAGCTCCAATAGCGTATAT

TAAAGTTGTTGCGGTTAAAAAGCTCGTAGTTGGATTTCAGTTCTGGACTGACGGTTCACC TAAAGTTGTTGCGGTTAAAAAGCTCGTAGTTGGATTTCAGTTCTGGACTGACGGTTCACC TAAAGTTGTTGCGGTTAAAAAGCTCGTAGTTGGATTTCAGTTCTGGACTGACGGTCACC TAAAGTTGTTGCGGTTAAAAAGCTCGTAGTTGGATTTCAGTTCTGGACTGACGGTCACC TAAAGTTGTTGCGGTTAAAAAGCTCGTAGTTGGATTTCAGTTCTGGACTGACGGTCACC TAAAGTTGTTGCGGTTAAAAAGCTCGTAGTTGGATTTCAGTTCTGGACTGACGGTCACC TAAAGTTGTTGCGGTTAAAAAGCTCGTAGTTGGATTTCAGTTCTGGACTGACGGTCACC

GCCCGGTGCACACTGTCACGCTCCGAACAGCCACAACAGCCCGCTGGCTCGCACGGGGTG GCCCGGTGCATACTGTCACGCTCCGAACAGCCACAACAGCCCGCTGGCTCGCACGGGGTG GCCCGGTGCACACTGTCACGCTCCGAACAGCCACAACAGCCCGCTGGCTCGCACGGGGTG GCCCGGTGCACACTGTCACGCTCCGAACAGCCACAACAGCCCGCTGGCTCGCACGGGGTG GCCCGGTGCACACTGTCACGCTCCGAACAGCCACAACAGCCCGCTGGCTCGCACGGGGTG GCCCGGTGCACACTGTCACGCTCCGAACAGCCACAACAGCCCGCTGGCTCGCACGGGGTG GCCCGGTGCACACTGTCACGCTCCGAACAGCCACAACAGCCCGCTGGCTCGCACGGGGTG GCCCGGTGCACACTGTCACGCTCCGAACAGCCACAACAGCCCGCTGGCTCGCACGGGGTG Gaetice_depressus Cancer_pagurus Carcinoplax_suruguensis Dairoides Hypothalassia_armata Ebalia_tuberculosa Eriphides_hispida CTCTTCATCGAGTGTCCCGCGTGGCCGGCAGAGTTTACTTTGAAAAAATTAGAGTGCTCA CTCTTCATCGAGTGTCCCGCGGCGGCGGCAGAGTTTACTTTGAAAAAATTAGAGTGCTCA CTCTTAAACGAGTGTCCCGCGTGGCCGGCAGAGTTTACTTTGAAAAAATTAGAGTGCTCA CTCTTCATCGAGTGTCCCGCGTGGCCGGCAGAGTTTACTTTGAAAAAATTAGAGTGCTCA CTCTTCATCGAGTGTCCCGCGTGGCCGGCAGAGTTTACTTTGAAAAAATTAGAGTGCTCA CTCTTCATCGAGTGTCCCGCGGGCGGCGGCAGAGTTTACTTTGAAAAAATTAGAGTGCTCA CTCTTCATCGAGTGTCCCGCGGGGCGGCGGCAGAGTTTACTTTGAAAAAATTAGAGTGCTCA CTCTTCATCGAGTGTCCCGCGTGGCCGGCAGAGTTTACTTTGAAAAAATTAGAGTGCTCA

AAGCAGGCTACACTTACGGCCTGAATGCCTATGCATGGAATAATGGAATAGGACCTCGGT AAGCAGGCTACACTGACGGCCTGAATGCCTATGCATGGAATAATGGAATAGGACCTCGGT

AAGCAGGCTACACTGACGGCCTGAATGCCTATGCATGGAATAATGGAATAGGACCTCGGT

AAGCAGGCTACACTGACGGCCTGAATGCCTATGCATGGAATAATGGAATAGGACCTCGGT

AAGCAGGCTACACTGACGGCCTGAATGCCTATGCATGGAATAATGGAATAGGACCTCGGT AAGCAGGCTACACTGACGGCCTGAATGCCTATGCATGGAATAATGGAATAGGACCTCGGT

AAGCAGGCTACACTGACGGCCTGAATGCCTATGCATGGAATAATGGAATAGGACCTCGGT

Gaetice_depressus Cancer_pagurus Carcinoplax_suruguensis Dairoides Hypothalassia_armata Ebalia_tuberculosa Eriphides hispida

Gaetice_depressus Cancer_pagurus Carcinoplax_suruguensis Dairoides Hypothalassia_armata Ebalia_tuberculosa Eriphides hispida

Gaetice_depressus Cancer_pagurus Carcinoplax_suruguensis Dairoides Hypothalassia_armata Ebalia_tuberculosa Eriphides_hispida TCTATTTTGTCGGTTTTCTGAACCCGAGGTAATGACTAATAGGAACAGGCGGGGGCATTC TCTATTTGTCGGTTTTCTGAACCCCGAGGTAATGACTAATAGGAACAGGCGGGGGGCATTC TCTATTTGTCGGTTTTCTGAACCCCGAGGTAATGACTAATAGGAACAGGCGGGGGGCATTC TCTATTTGTCGGTTTTCTGAACCCGAGGTAATGACTAATAGGAACAGGCGGGGGCATTC TCTATTTGTCGGTTTTCTGAACCCGAGGTAATGACTAATAGGAACAGGCGGGGGCATTC TCTATTTGTCGGTTTTCTGAACCCCGAGGTAATGACTAATAGGAACAGGCGGGGGCATTC TCTATTTGTCGGTTTTCTGAACCCCGAGGTAATGACTAATAGGAACAGGCGGGGGCATTC

GTATTGCGACGCTAGAGGTGAAATTCTTGGACCGTCGCAAGACGAACTACTGCGAAAGCA GTATTGCGACGCTAGAGGTGAAATTCTTGGACCGTCGCAAGACGAACTACTGCGAAAGCA GTATTGCGACGCTAGAGGTGAAATTCTTGGACCGTCGCAAGACGAACTACTGCGAAAGCA GTATTGCGACGCTAGAGGTGAAATTCTTGGACCGTCGCAAGACGAACTACTGCGAAAGCA GTATTGCGACGCTAGAGGTGAAATTCTTGGACCGTCGCAAGACGAACTACTGCGAAAGCA GTATTGCGACGCTAGAGGTGAAATTCTTGGACCGTCGCAAGACGAACTACTGCGAAAGCA GTATTGCGACGCTAGAGGTGAAATTCTTGGACCGTCGCAAGACGAACTACTGCGAAAGCA Gaetice_depressus Cancer_pagurus Carcinoplax_suruguensis Dairoides Hypothalassia_armata Ebalia_tuberculosa Eriphides hispida

Gaetice_depressus Cancer_pagurus Carcinoplax_suruguensis Dairoides Hypothalassia_armata Ebalia_tuberculosa Eriphides_hispida

Gaetice_depressus Cancer_pagurus Carcinoplax_suruguensis Dairoides Hypothalassia_armata Ebalia_tuberculosa Eriphides_hispida

Gaetice_depressus Cancer_pagurus Carcinoplax_suruguensis Dairoides Hypothalassia_armata Ebalia_tuberculosa Eriphides_hispida TTTGCCAAGGATGTTTCATTAATCAAGAACGAAAGTTAGAGGTTCGAAGGCGATCAGAT TTTGCCAAGGATGTTTTCATTAATCAAGAACGAAAGTTAGAGGTTCGAAGGCGATCAGAT TTTGCCAAGGATGTTTTCATTAATCAAGAACGAAAGTTAGAGGTTCGAAGGCGATCAGAT TTTGCCAAGGATGTTTTCATTAATCAAGAACGAAAGTTAGAGGTTCGAAGGCGATCAGAT TTTGCCAAGGATGTTTTCATTAATCAAGAACGAAAGTTAGAGGTTCGAAGGCGATCAGAT

TTTGCCAAGGATGTTTTCATTAATCAAGAACGAAAGTTAGAGGTTCGAAGGCGATCAGAT

TTTGCCAAGGATGTTTTCATTAATCAAGAACGAAAGTTAGAGGTTCGAAGGCGATCAGAT

ACCGCCCTAGTTCTAACCATAAACGATGCTGACCAGCGATCCGCCGGCGTTATTCCCATG ACCGCCCTAGTTCTAACCATAAACGATGCTGACCAGCGATCCGCCGGCGTTATTCCCATG ACCGCCCTAGTTCTAACCATAAACGATGCTGACCAGCGATCCGCCGGCGTTATTCCCATG ACCGCCCTAGTTCTAACCATAAACGATGCTGACCAGCGATCCGCCGGCGTTATTCCCATG ACCGCCCTAGTTCTAACCATAAACGATGCTGACCAGCGATCCGCCGGCGTTATTCCCATG ACCGCCCTAGTTCTAACCATAAACGATGCTGACCAGCGATCCGCCGGCGTTATTCCCATG

ACCCGGCGGCAGCTTCCGGGAAACCAAAGTCTTTGGGTTCCGGGGGAAGTATGGTTGCA ACCCGGCGGCGACTTCCGGGAAACCAAAGTCTTTGGGTTCCGGGGGAAGTATGGTTGCA ACCCGGCGGGCAGCTTCCGGGAAACCAAAGTCTTTGGGTTCCGGGGGAAGTATGGTTGCA ACCCGGCGGGCAGCTTCCGGGAAACCAAAGTCTTTGGGTTCCGGGGGAAGTATGGTTGCA ACCCGGCGGCAGCTTCCGGGAAACCAAAGTCTTTGGGTTCCGGGGGAAGTATGGTTGCA ACCCGGCGGCAGCTTCCGGGAAACCAAAGTCTTTGGGTTCCGGGGGAAGTATGGTTGCA ACCCGGCGGCAGCTTCCGGGAAACCAAAGTCTTTGGGTTCCGGGGGAAGTATGGTTGCA

AAGCTGAAACTTAAAGGAATTGACGGAAGGGCACCACCAGGAGTGGAGCCTGCGGCTTAA AAGCTGAAACTTAAAGGAATTGACGGAAGGGCACCACCAGGAGTGGAGCCTGCGGCTTAA AAGCTGAAACTTAAAGGAATTGACGGAAGGGCACCACCAGGAGTGGAGCCTGCGGCTTAA AAGCTGAAACTTAAAGGAATTGACGGAAGGGCACCACCAGGAGTGGAGCCTGCGGCTTAA AAGCTGAAACTTAAAGGAATTGACGGAAGGGCACCACCAGGAGTGGAGCCTGCGGCTTAA AAGCTGAAACTTAAAGGAATTGACGGAAGGGCACCACCAGGAGTGGAGCCTGCGGCTTAA AAGCTGAAACTTAAAGGAATTGACGGAAGGGCACCACCAGGAGTGGAGCCTGCGGCTTAA AAGCTGAAACTTAAAGGAATTGACGGAAGGGCACCACCAGGAGTGGAGCCTGCGGCTTAA

TTTGACTCAACACGGGGAACCTCACCAGGCCCAGACACCGGAAGGATTGACAGATTGAGA TTTGACTCAACACGGGGAACCTCACCAGGCCCAGACACCGGAAGGATTGACAGATTGAGA TTTGACTCAACACGGGGAACCTCACCAGGCCCAGACACCGGAAGGATTGACAGATTGAGA TTTGACTCAACACGGGGAACCTCACCAGGCCCAGACACCGGAAGGATTGACAGATTGAGA TTTGACTCAACACGGGGAACCTCACCAGGCCCAGACACCGGAAGGATTGACAGATTGAGA TTTGACTCAACACGGGGAACCTCACCAGGCCCAGACACCGGAAGGATTGACAGATTGAGA TTTGACTCAACACGGGGAACCTCACCAGGCCCAGACACCGGAAGGATTGACAGATTGAGA

Gaetice_depressus Cancer pagurus Carcinoplax suruguensis Dairoides Hypothalassia armata Ebalia tuberculosa Eriphides_hispida

Gaetice depressus Cancer_pagurus Carcinoplax_suruguensis Dairoides Hvpothalassia armata Ebalia_tuberculosa Eriphides_hispida

Gaetice_depressus Cancer pagurus Carcinoplax_suruguensis Dairoides Hypothalassia_armata Ebalia_tuberculosa Eriphides_hispida

Gaetice_depressus Cancer pagurus Carcinoplax_suruguensis Dairoides Hypothalassia_armata Ebalia_tuberculosa Eriphides hispida

Gaetice_depressus Cancer pagurus Carcinoplax suruguensis Dairoides Hypothalassia armata Ebalia_tuberculosa Eriphides_hispida

Gaetice_depressus Cancer_pagurus Carcinoplax_suruguensis Dairoides Hypothalassia armata Hypothalassia____ Ebalia_tuberculosa Eriphides_hispida

Gaetice_depressus Cancer_pagurus Dairoides Hypothalassia armata Hypotnalassia_u. Ebalia_tuberculosa Eriphides hispida

AGATTGAGCAATAACAGGTCTGTGATGCCCTTAGATGTTCTGGGCCGCACGCGCGCTACA AGATTGAGCAATAACAGGTCTGTGATGCCCTTAGATGTTCTGGGCCGCACGCGCGCTACA AGATTGAGCAATAACAGGTCTGTGATGCCCTTAGATGTTCTGGGCCGCACGCGCGCTACA AGATTGAGCAATAACAGGTCTGTGATGCCCTTAGATGTTCTGGGCCGCACGCGCGCTACA AGATTGAGCAATAACAGGTCTGTGATGCCCTTAGATGTTCTGGGCCGCACGCGCGCTACA

CTGAAGGGATCAACGTGTCCTCCCCCCCCGAGAGGAGCGGGTAACCCGTTGAAATCCTTT CTGAAGGGATCAACGTGTCCTCCCCCCCCGAGAGGAGCGGGTAACCCGTTGAAATCCTTT CTGAAGGGATCAACGTGTCCTCCCCCCCCGAGAGGAGCGGGTAACCCGTTGAAATCCTTT CTGAAGGGATCAACGTGTCCTCCCCCCCCGAGAGGAGCGGGTAACCCGTTGAAATCCTTT CTGAAGGGATCAACGTGTCCTCCCCCCCCCGAGAGGAGCGGGTAACCCGTTGAAATCCTTT CTGAAGGGATCAACGTGTCCTCCCCCCCCGAGAGGAGCGGGTAACCCGTTGAAATCCTTT CTGAAGGGATCAACGTGTCCTCCCCCCCCGAGAGGAGCGGGTAACCCGTTGAAATCCTTT

CATGATAGGGATTGGGGTTTGCAATTGTCTCCCATGAACGAGGAATTCCCAGTAAGCGCA CATGATAGGGATTGGGGTTTGCAATTGTCTCCCATGAACGAGGAATTCCCAGTAAGCGCA CATGATAGGGATTGGGGTTTGCAATTGTCTCCCATGAACGAGGAATTCCCAGTAAGCGCA CATGATAGGGATTGGGGTTTGCAATTGTCTCCCATGAACGAGGAATTCCCCAGTAAGCGCA CATGATAGGGATTGGGGTTTGCAATTGTCTCCCATGAACGAGGAATTCCCAGTAAGCGCA CATGATAGGGATTGGGGTTTGCAATTGTCTCCCATGAACGAGGAATTCCCAGTAAGCGCA CATGATAGGGATTGGGGTTTGCAATTGTCTCCCATGAACGAGGAATTCCCAGTAAGCGCA *****

AGTCATGAGCTTGCGTTGATTACGTCCCTGCCCTTTGTACACACCGCCCGTCGCTACTAC AGTCATGAGCTTGCGTTGATTACGTCCCTGCCCTTTGTACACACCGCCCGTCGCTACTAC AGTCATGAGCTTGCGTTGATTACGTCCCTGCCCTTTGTACACACCGCCCGTCGCTACTAC AGTCATGAGCTTGCGTTGATTACGTCCCTGCCCTTTGTACACACCGCCCGTCGCTACTAC AGTCATGAGCTTGCGTTGATTACGTCCCTGCCCTTTGTACACACCGCCCGTCGCTACTAC AGTCATGAGCTTGCGTTGATTACGTCCCTGCCCTTTGTACACACCGCCCGTCGCTACTAC AGTCATGAGCTTGCGTTGATTACGTCCCTGCCCTTTGTACACACCGCCCGTCGCTACTAC

CGATTGAATGATTTAGTGAGGCCTTCGGACTGGCGCTCTTGGATGCCGGGCCCACGCGGT CGATTGAATGATTTAGTGAGGCCTTCGGACTGGCGCCCTTGGATGCCGGGCCCATGCGGT CGATTGAATGATTTAGTGAGGCCTTCGGACTGGCGCTCTTGGATGCCGGGCCCATGGTTC CGATTGAATGATTTAGTGAGGCCTTCGGACTGGCGCTCTTGGATGCCGGGCCCATGGTTC CGATTGAATGATTTAGTGAGGCCTTCGGACTGGCGCTCTTGGATGCCAGGACCACGCGGT CGATTGAATGATTTAGTGAGGCCTTCGGACTGGCGCTCTTGGATGCCGGGCCCATGCGGT

TCT-CCGCTGGGCTCTCGGCGCCTCGAGCTGACGGAAAGATGTCCAAACTTGATCATTTA G--CCGTTGGGTCTCTCGGCGCCTCGAGCTGACGGAA-----TCTGCCGCTGGGCTCTCGGCGCCTCGAGCTGACGGAAAGATGTCCAAACTTGATCATTTA TGCC-----GCTCTCGGCGCCTCGAGCTGACGGAAAGATGTCCAAACTTGATCATTTA TGCC-----GCTCTCGGCGCCTCGAGCTGACGGAAAGATGTCCAAACTTGATCATTTA TCCGCCGCTGGACTCTCGGCGCCTCGAGCTGACGGAAAGATGTCCAAACTTGATCATTTA TCTGCCGCTGGGCTCTCGGCGCCTCGAGCTGACGGAAAGATGTCCAAACTTGATCATTTA *********************

GAGGAAGTAAAAGTCGTAACAAGGTTTCCGT _____ Carcinoplax_suruguensis GAGGAAGTAAAAGTCGTAAC-----GAGGA-----GAGGA-----G------GAGGA------

ANEXO 13. Alineamiento completo de las secuencias del gen HSP70

Marsupenaeus japonicus -----GATGTTCTAGGTTAATCT---CTTATCTTT Penaeus monodon _____ Exopalaemon carinicauda -----GATACCAGCC----CGGAGACCGA-GAGAAGAG----CAGACGTGT -----ATACCAGCCGAGACACAGAGGCAAAGAGCACGTCAGTCGAGACTACACGCAA Pachygrapsus_marmoratus Eriocheir sinensis _____ _____ Scylla serrata -----GGAATACCAGCTCAAACAGCAAGTGAAGGAGTACGTCACCCTTCAGTCGCGACTA Scylla_paramamosain ACGCGGGGATACCAGCTCAAACACCGAGTGAAAGAGCACGTCACCCTTCAGTCGCGACTA Portunus_trituberculatus -----ATACCAGCTCAAACACCAAGTGAGGGAGTACATAGCCCCTGCGTTGCGACTA Marsupenaeus japonicus TAGATCTTTTGACACGCGTACTTAAAGTCGTTTCTTTTGTTTCAGATAAAATGGCTAAGG Penaeus_monodon -----CCTGCCTCGCGCTATTTAAAAATATCTAAAATAAGATAAAATGGCAAAGG Exopalaemon_carinicauda TA---CAATTAGCTCATTGGACTATTTAAAAATATCTAAAATAAGATAAGATAAAATGGCAAAGG Pachygrapsus_marmoratus CACTCGA---TTTTTCTATCTTATCGGTTTCCTAAGCCCAACAACAACAATGTCCAAGG Eriocheir sinensis -----ATGTCCAGGG Scylla serrata Scylla_paramamosain Portunus_trituberculatus CACTTCTACGCGATCTATTTATTTTACACCAC----ACCAAAGTAAATATGTCTAAGG CACCTGCAGTCGGTATTGATCTGGGAACCACCTACTCCTGCGTGGGTGTGTTCCAGCATG Marsupenaeus japonicus Penaeus monodon CACCTGCTGTCGGTATTGATCTGGGAACCACCTACTCCTGCGTGGGTGTGTTCCAGCATG Exopalaemon_carinicauda CACCAGCTGTCGGTATTGATCTGGGAACCACCTACTCCTGCGTGGGTGTGTTCCAGCATG Pachygrapsus_marmoratus GAGCAGCAGTGGGTATTGACCTGGGAACCACCTACTCCTGCGTGGGTGTGTTCCAGCATG Eriocheir sinensis GAGCAGCAGTGGGTATCGACCTGGGTACCACCTACTCATGCGTGGGTGTGTTCCAGCATG GAGCAGCTGTCGGCATTGACTTGGGGACAACCTACTCCTGCGTGGGTGTCTTCCAGCATC Scylla serrata Scylla_paramamosain GAGCAGCTGTCGGCATTGACTTGGGGACAACCTACTCCTGCGTGGGTGTCTTCCAGCATG Portunus_trituberculatus GAGCAGCAGTGGGTATTGACTTGGGGGACAACCTACTCCTGCGTAGGTGTCTTCCAGCATG **** ** ******* ***** ***** * * ** ** ** ** ** GCAAGGTGGAGATCATCGCCAACGACCAGGGCAACCGCACCACGCCCTCCTACGTCGCCT Marsupenaeus japonicus GCAAGGTGGAGATCATCGCCAACGACCAGGGCAACCGCACCACGCCCTCCTACGTCGCCT Penaeus monodon GCAAGGTGGAAATCATCGCCAACGACCAGGGCAACCGCACCACGCCCTCCTACGTCGCCT Exopalaemon_carinicauda Pachygrapsus marmoratus GCAAGGTGGAGATTATCGCCAACGACCAGGGCAACAGAACAACGCCCTCCTATGTGGCCT GCAAGGTGGAGATCATCGCCAACGATCAGGGCAACAGGACCACGCCCTCCTATGTGGCCT Eriocheir_sinensis Scylla serrata CCAAGGTGGAGATCATCGCCAACGATCAGGGCAACAGAACTACGCCCTCCTACGTGGCCT Portunus_trituberculatus GCAAGGTGGAGATCATCGCCAACGATCAGGGCAACAGAACTACGCCCTCCTACGTGGCCT GCAAGGTGGAGATCATCGCTAACGATCAGGGCCAACAGAACTACGCCCTCTTACGTGGCCT ******** ** ***** ***** ******* * ** ******* Marsupenaeus japonicus TCACAGACACCGAGCGTCTGATCGGCGACGCCGCCAAGAACCAGGTCGCGATGAACCCCA Penaeus monodon TCACAGACACAGAGCGTCTGATTGGTGACGCCGCCAAGAACCAGGTGGCGATGAACCCCA TCACAGACACCGAGCGTCTGATTGGTGACGCCGCCAAGAACCAGGTGGCGATGAACCCCA Exopalaemon carinicauda TCACAGACACCGAGCGTCTCATCGGTGACGCTGCCAAGAACCAGGTAGCAATGAACCCCA Pachygrapsus marmoratus Eriocheir sinensis TCACCGACACCGAGCGTCTCATCGGTGATGCCGCCAAGAACCAGGTGGCCATGAACCCCA Scylla serrata TCACTGACACAGAGCGTCTCATCGGAGATGCTGCTAAGAACCAGGTGGCCATGAACCCAA Scylla_paramamosain TCACTGACACAGAGCGTCTCATCGGAGATGCTGCTAAGAACCAGGTGGCCATGAATCCAA Portunus_trituberculatus TCACCGACACTGAGCGTCTCATCGGAGATGCTGCCAAGAACCAGGTGGCCATGAATCCAA Marsupenaeus japonicus

Penaeus_monodon Exopalaemon_carinicauda Pachygrapsus_marmoratus Eriocheir_sinensis Scylla_serrata Scylla_paramamosain Portunus_trituberculatus ACAACACGGTGTTCGATGCCAAGCGTCTGATCGGCCGCAAATTCGACGACCACACAGTCC GCAACACTGTATTCGACGCCCAAGCGACTCATCGGCCGCAAATTCGAAGACCACACAGTCC ACAACACCGTATTCGACGCCAAGCGACTCATCGGCAGGAAGTTCCAACGATCACAACGTCC ACAACACCGTATTCGATGCCAAGAGACTCATCGGCAGGAAGTTCCAACGATCACAATGTAC ACAACACGTTTTTGATGCCAAGAGACTCGATCGCAGGAAGTTCAACGATCATCATATTC ACAACACTGTTTTGATGCCAAGAGGCTGATTGGCAGGAAGTTCAACGATCATCATATTC ACAACACTGTTTTTGATGCCAAGAGGCTGATTGGCAGGAAGTTCAACGATCATCATATTC ACAACACTGTTTTTGATGCCAAGAGGCTGATTGGCAGGAAGTTCAACGATCATCATATTC

***** ** ** ** ** *** * ** ** *** * ** *** **

Exopalaemon carinicauda Pachygrapsus marmoratus Eriocheir_sinensis Scylla serrata Scylla paramamosain Portunus_trituberculatus TCATGAAGATGAAGGAAACAGCAGAAGCATACCTTGGTGCTGCCGTGAAGGATGCTGTTA * ** ** ***** * ** ** ** ** ***** Marsupenaeus_japonicus Penaeus monodon Exopalaemon carinicauda Pachygrapsus marmoratus Eriocheir_sinensis Scylla serrata Scylla_paramamosain Portunus_trituberculatus Marsupenaeus japonicus

Penaeus monodon Exopalaemon carinicauda Pachygrapsus marmoratus Eriocheir sinensis Scylla serrata Scylla paramamosain Portunus trituberculatus

Marsupenaeus japonicus

Exopalaemon carinicauda

Pachygrapsus marmoratus

Marsupenaeus_japonicus Penaeus monodon

Exopalaemon carinicauda Pachygrapsus marmoratus

Eriocheir sinensis Scylla serrata

Scylla paramamosain Portunus trituberculatus

Marsupenaeus japonicus

Penaeus monodon

Portunus trituberculatus

Eriocheir sinensis

Penaeus monodon

Scylla serrata Scylla paramamosain

Marsupenaeus japonicus Penaeus_monodon Exopalaemon carinicauda Pachygrapsus marmoratus Eriocheir sinensis Scylla serrata Scylla paramamosain Portunus trituberculatus

TCTCAGGTCTTAATGTGCTGCGTATCATTAACGAACCCACCGCTGCCACCATCGCCTACG TCTCGGGTCTTAATGTGCTGCGTATCATCAACGAACCCACCGCTGCTGGCATCGCCTACG TCTCGGGTCTTAATGTGCTGCGTATCATTAACGAACCCACCGCTGCTGCCATCGCTTACG TCTCTGGTCTCAATGTGCTGCGTATCATCAACGAACCCACCGCCGCCGCCATCGCCTACG TCTCTGGTCTCAATGTGCTGCGTATCATCAACGAACCCACCGCCGCCGCCATCGCCTACG TCTCCGGTGTCAATGTGCTGCGTATCATTCCCGAACCCACCGCTGCAGCCATCGCCTACG TCTCCGGTGTCAATGTGCTGCGTATCATTAACGAACCCACCGCTGCAGCCATCGCCTACG TCTCTGGTGTCAATGTGCTGCGTATCATTAATGAACCCACCGCTGCCGCCATCGCCTATG ********* **** *** * *************

GTCTCGACAAGAAAGTGGGCGGTGAGCGCAACGTCTTGATCTTCGATCTTGGCGGTGGTA

GCCTCGACAAGAAGGTCGGCGGTGAGCGCAATGTCTTGATCTTCGATCTTGGCGGTGGTA

GCCTCGACAAAAAGGTCGGCGGTGAGCGCAATGTCTTGATCTTCGATCTTGGCGGTGGTA GCCTCGACAAAAAGGTAGGCGGTGAGCGCAACGTGCTCATCTTCGATCTTGGCGGTGGGA

GCCTCGACAAGAAAGTAGGCGGTGAGCGCAACGTGCTCATCTTCGATCTGGGCGGTGGGA GTTTGGACAAGAAAGTGGGCGGTGAGCGCAACGTGCTCATCTTCGATCTTGGCGGTGGGA

GTTTGGACAAGAAAGTGGGCGGTGAGCGCAACGTGCTCATCTTCGATCTTGGCGGTGGGA

GTTTGGACAAGAAAGTAGGTGGTGAGCGCAATGTCCTCATCTTCGATCTTGGCGGTGGGA

***** ** ** ** *********

TCACTGTCCCAGCGTACTTTAATGACTCCCAGCGTCAGGCCACCAAAGACGCAGGCACCA

TCACTGTGCCCGCTTACTTCAACGATTCCCAGCGTCAGGCCACCAAGGATGCTGGAACCA TCACTGTACCTGCTTACTTCAACGATTCTCAGCGCCAGGCCACCAAGGACGCTGGAACCA TCACTGTCCCTGCTTACTTCAACGATTCTCAGCGCCAGGCCACCAAGGACGCTGGAACCA TCACTGTCCCGGCCTACTTCAACGACTCCCAGCGTCAAGCCACCAAGGACGCCGGGACCA TCACCGTTCCAGCCTACTTCAACGACTCCCAGCGTCAGGCCACCAAGGACGCTGGGACCA TCACTGTCCCAGCCTACTTCAATGACTCCCAGCGTCAGGCCACCAAAGATGCAGGCACAA TCACTGTCCCAGCCTACTTCAATGACTCCCAGCGTCAGGCCACCAAAGATGCAGGCACAA

TCATCAAGATGAAGGAAACTGCGGAGGCTTACCTGGGCTCCACAGTGAAGGACGCTGTAG TCATCAAAATGAAGGAGACCGCCGAGGCTTACCTGGGATCCACAGTGAAGGATGCTGTAG TCATCAAAATGAAGGAGACCGCCGAGGCTTACCTGGGATCAACAGTGAAGGACGCTGTAG TGATCAAGATGAAGGAGACTGCCGAAGCGTACCTTGGCAGCGTCGTAAAGGACGCTGTCG TGATCAAGATGAAGGAGACGGCCGAAGCTTACCTTGGCACCACCGTGAAGGACGCTGTCG TTATGAAGATGAAAAAAAAAAGCAGAAGCATACCTTGGTGCTGCTGTGAAGGATGCTGTCA TTATGAAGATGAAGGAAACAGCAGAAGCATACCTTGGTGCTGCTGTGAAGGATGCTGTCA

AGGTCGAGTACAAGGGCGACAAGAAGACCTTCTACCCCGAAGAGATCTCCTCGATGGTGC AGGTAGAGTACAAGGGAGACAAGAAGACCTTCTACCCAGAAGAGATCTCCTCGATGGTGC AGGTAGAGTACAAGGGAGACAAGAAGACCTTTTACCCAGAAGAGATCTCCTCGATGGTGC AAGTAGAATACAAGGGAGAGGCCAAATCCTTCTACCCCGAGGAGATTTCATCCATGGTGC AAGTAGACTACAAGGGCGAGACCAAGTCGTTCTACCCCGAGGAGATCTCATCCATGGTGC GGGTAGAGTACAAGGGAGAAAAGAAGTCATTCTACCCTGAGAAAATCTCCTCTATGGTGC GGGTAGAGTACAAGGGAGAAAAGAAGTCATTCTACCCTGAGGAAATCTCCTCTATGGTGC GGGTAGAGTACAAAGGAGAAAAGAAGTCTTTCTACCCTGAGGAGATCTCCTCAATGGTGC ** ** ***** ** ** ** * ** ***** **

AGAGCGACATGAAGCACTGGCCCTTCGAAATCATCAACGAGAGCACGAAGCCAAAGATTC AGAGCGACATGAAGCATTGGCCCTTCACCATCATCAACGAGAGCACAAAGCCAAAGATCC AGAGCGACATGAAGCATTGGCCCTTCACCATCAACGAGAGCACAAAGCCAAAGATCC AGAGCGACATGAAGCACTGGCCATTCGACGTGATTGACGACAACACAAAGCCAAAGATCA AGAGCGACATGAAGCACTGGCCCTTTGATGTGATCGATGACAACACAAAGCCAAAGATCA AGTCTGACATGAAGCACTGGCCCTTCGAGGTCATTGATGACAGCACGAAACCAAAGATCA AGTCTGACATGAAGCACTGGCCCTTCGAGGTCATTGATGACAGCACGAAAACCAAAGATCA AGTCAGACATGAAGCACTGGCCCTTCGAGGTCATTGAGGACAGCACGAAACCAAAGATCA ********* ***** ** * ** * ** * *** ** ******* **

** ***** ****

Marsupenaeus japonicus Penaeus monodon Exopalaemon carinicauda Pachygrapsus marmoratus Eriocheir sinensis Scylla serrata Scylla paramamosain

Marsupenaeus_japonicus Penaeus monodon Exopalaemon carinicauda Pachygrapsus_marmoratus Eriocheir sinensis Scylla serrata Scylla_paramamosain

Marsupenaeus_japonicus Penaeus monodon Exopalaemon carinicauda Pachygrapsus marmoratus Eriocheir sinensis Scylla serrata Scylla paramamosain Portunus_trituberculatus

Marsupenaeus japonicus Penaeus_monodon Exopalaemon_carinicauda Pachygrapsus_marmoratus Eriocheir sinensis Scylla serrata Scylla_paramamosain

Marsupenaeus japonicus Penaeus monodon Exopalaemon carinicauda Exopalaemon_carinicauda
Pachygrapsus_marmoratus Eriocheir sinensis Scylla serrata Scylla paramamosain Portunus_trituberculatus

Marsupenaeus japonicus Penaeus monodon Exopalaemon carinicauda Pachygrapsus marmoratus Eriocheir_sinensis Scylla serrata Scylla paramamosain

CTTTCGATGTGTCCATCCTTACCATCGAGGATGGTATCTTCGAAGTAAAGTCCACAGCTG CCTTCGATGTGTCCATCCTTACCATCGAGGATGGTATCTTCGAGGTCAAGTCAACAGCTG CCTTCGATGTGTCCATCCTTACCATCGAGGATGGTATCTTCGAGGTCAAGTCAACAGCTG CTTTCGATGTGTCCATCCTAACCATCGAGGATGGCATCTTCGAAGTAAAGTCCACCGCAG CCTTCGATGTGTCCATCCTGACCATCGAGGATGGTATCTTCGAAGTAAAGTCCACAGCTG CCTTTGATGTATCCATCCTGACCATCGAGGATGGCATCTTTGAGGTGAAGTCAACTGCAG CCTTTGATGTATCCATCCTGACCATCGAGGATGGCATCTTTGAGGTGAAGTCAACTGCAG Portunus_trituberculatus CCTTTGATGTATCTATCCTGACCATCGAGGATGGCATCTTTGAGGTGAAATCAACTGCAG

GTGACACTCACTTGGGCGGCGAAGACTTCGACAACCGCATGGTGAACCACTTCATCCAGG GTGACACTCACTTGGGCGGTGAAGACTTCGACAACCGCATGGTGAACCACTTCATCCAGG GTGACACTCACTTGGGCGGTGAAGACTTCGACAACCGCATGGTGAACCACTTCATCCAGG GAGACACTCACTTGGGTGGGGGGGGGGGGCTTCGACACAGGATGGTGAACCACTTCCTCCAAG GAGACACTCACTTGGGTGGGGGGGGGGGCTTCGACAATAGGATGGTCAACCACTTCCTCCAGG Portunus trituberculatus GAGACACACACTTGGGTGGAGAAGACTTTGACAACAGAATGGTAAACCATTTCCTTCAGG * ***** ** ***** ** ** ***** * ***** ***** *** * ** *

> AATTCAAGCGCAAGTACAAGAAGGACCCAAGTGAGAACAAGCGCTCCCTGCGTCGCCTGC AATTCAAGCGCAAGTACAAGAAGGACCCAAGTGAGAACAAGCGCTCCCTGCGTCGCCTGC AGTTCAAGCGGAAGTACAAGAAGGACCCGTCTGAGAGTAAGCGTGCCCTCCGACGCCTCC AGTTCAAGCGGAAGTACAAGAAGGATCCGTCTGAGAGTAAGCGTGCCCTCCGCCGCCTCC AATTCAAGCGAAAGTACAAGAAGGATCCATCTGAGAGCAAGCGAGCCCTGAGGCGCCTGC AATTCAAGCGAAAGTACAAGAAGGACCCAACTGAGAGCAAGCGAGCCCTGAGGCGCCTGC * ******* *********** ***** ***** ****

GTACTGCCTGTGAGCGCGCGAAGCGTACCCTGTCATCCTCCACACAGGCTAGCGTAGAGA GTACGGCCTGTGAGCGTGCGAAGCGCACCCTGTCTTCCTCGACGCAGGCCAGTGTGGAGA GTACCGCCTGTGAGCGTGCGAAGCGCACCCTGTCTTCCTCGACACAGGCCAGTGTGGAGA GCACCGCTTGTGAGCGTGCGAAGCGTACGCTTTCCTCCTCCGCCCAGGCCAGCGTGGAGA GTACTGCTTGTGAGCGTGCGAAGCGTACCCTCTCTCCTCCGCCCAGGCCAGCGTGGAGA GTACTGCCTGTGAGCGTGCGAAGCGTACCCTCTCCTCCTCCACCCAGGCCAGTGTGGAAA GTACTGCCTGTGAGCGTGCGAAGCGTACCCTCTCCTCCTCCACCCAGGCCAGTGTGGAAA Portunus trituberculatus GTACTGCCTGTGAGCGTGCAAAGCGTACCCTCCTCCTCCACCCAGGCCAGTGTGGAAA * ** ** ******* ** ***** ** ** ** ** * ***** ** ** ** *

> TCGACTCCCTCTTCGAAGGTATCGACTTCTACACCTCCATCACTCGTGCTCGCTTTGAGG TCGACTCCCTCTTCGAAGGTATCGACTTCTACACCTCTATCACTCGTGCTCGCTTCGAGG TCGACTCCCTCTTCGAAGGTATCGATTTCTACACCTCCATCACTCGTGCTCGAGG TAGACTCTCTCTCGAGGGCATCGATTTCTACACTTCCATCACCCGTGCCCGTTTTGAGG TCGACTCTCTTTTTGAGGGCATTGACTTCTACACCTCCATCACCCGTGCCCGCTTTGAGG TTGATTCACTCTTCGAGGGCATTGACTTCTACACCTCCGTCACCCGTGCCCGCTTCGAGG TTGATCCACTCTTCGAGGGCATTGACTTCTACACCTCCGTCACCCGTGCCCGCTTCGAGG TAGATTCTCTCTTTGAGGGCATCGACTTCTACACTTCTGTTACCCGTGCCCGCTTTGAGG * ** * ** ** ** ** ** ** ** ******

AGCTGTGCGCCGATCTTTTCCGTGGCACCCTGGAGCCCGTGGAGAAGTCTCTCCGCGATG AGCTGTGCGCCGATCTGTTCCGTGGCACCTTGGAGCCCGTGGAGAAGTCACTCCGTGATG AGCTGTGCGCCGATCTGTTCCGTGGCACCTTGGAGCCCGTAGAGAAGTCCCTCCGTGATG AGCTCTGCGCTGACCTGTTCCGCGGTACCTTGGAGCCTGTGGAGAAGGCCCTGCGTGATG AGCTCTGCGCTGACCTGTTCCGTGGCACTCTGGAGCCTGTGGAGAAATCCCTCCGTGATG AACTGTGTGCTGACCTGTTCCGTGGCACACTGGAGCCTGTGGAGAAGGCCCTGCGTGATG AACTGTGTGCTGACCTGTTCCGTGGCACACTGGAGCCTGTGGAGAAGGCCCTGCGTGATG Portunus_trituberculatus AACTATGTGCTGACCTGTTCCGTGGCACACTGGAGCCCGTGGAGAAGGCTCTACGTGATG
Marsupenaeus_japonicus Penaeus_monodon Exopalaemon_carinicauda Pachygrapsus_marmoratus Eriocheir_sinensis Scylla_serrata Scylla_paramamosain Portunus_trituberculatus

Marsupenaeus_japonicus Penaeus_monodon Exopalaemon_carinicauda Pachygrapsus_marmoratus Eriocheir_sinensis Scylla_serrata Scylla_paramamosain Portunus_trituberculatus

Marsupenaeus_japonicus Penaeus_monodon Exopalaemon_carinicauda Pachygrapsus_marmoratus Eriocheir_sinensis Scylla_serrata Scylla_paramamosain Portunus trituberculatus

Marsupenaeus_japonicus Penaeus_monodon Exopalaemon_carinicauda Pachygrapsus_marmoratus Eriocheir_sinensis Scylla_serrata Scylla_paramamosain Portunus_trituberculatus

Marsupenaeus_japonicus Penaeus_monodon Exopalaemon_carinicauda Pachygrapsus_marmoratus Eriocheir_sinensis Scylla_serrata Scylla_paramamosain Portunus_trituberculatus

Marsupenaeus_japonicus Penaeus_monodon Exopalaemon_carinicauda Pachygrapsus_marmoratus Eriocheir_sinensis Scylla_serrata Scylla_paramamosain Portunus_trituberculatus CCAAGATCCAGAAGCTCCTGCAGGACTTCTTCAACGGCAAGGAGCTGAACAAGTCCATCA CTAAGATCCAGAAGCTCCTGCAGGACTTCTTCAACGGCAAGGAGTTGAACAAGTCCATCA CTAAGATCCAGAAGCTCCTGCAGGACTTCTTCAACGGCAAGGAGCTGAACAAGTCCATCA CCAAGATTCAGAAGCTGCTGCAGGACTTCTTTAACGGCAAGGAGCTCAACAAGTCCATCA CCAAGATCCAGAAGCTGCTGCAGGACTTCTTCAACGGCAAGGAGGTCAACAAGTCCATCA CTAAGATCCAGAAACTCCTGCAGGACTTCTTCAATGGCAAGGAGCTAAACAAGTCCATCA CTAAGATCCAGAAACTCCTGCAGGACTTCTTCAATGGCAAGGAGCTAAACAAGTCCATCA CTAAGATCCAGAAACTCCTGCAGGACTTCTTCAATGGCAAGGAGCTAAACAAGTCCATCA CTAAGATCCAGAAACTCCTGCAGGACTTCTTCAATGGCAAGGAGCTAAACAAGTCCATCA CTAAGACCCAGAAACTCCTGCAGGACTTCTTCAATGGCAAGGAGCTAAACAAGTCCATCA

ACCCCGATGAGGCTGTTGCCTACGGAGCTGCCGTCCAGGCCGCTATCCTGTGCGGTGACA ACCCCGATGAGGCTGTGGCCTACGGCGCCGCTGTCCAGGCCGCCATTCTGTGCGGTGACA ACCCCGATGAGGCTGTGGCCTACGGTGCCGCGGCGGTGCAGGCGGCCATCTCTGTGCGGCGACA ACCCCGACGAGGCTGTAGCCTACGGCGGCGGCGGTGCAGGCGGCCATCCTCTGCGGCGACA ACCCTGATGAAGCTGTGGCCTATGGTGCAGGCGGCGGCGCCATCCTTGTGCGGCGACA ACCCTGATGAAGCTGTGGCCTATGGTGCAGCTGTGCAGGCTGCCATCTTGTGCGGGGAAA ACCCTGATGAAGCTGTGGCCTATGGTGCAGCTGTGCAGGCTGCCATCTTGTGGTGGATA ACCCTGATGAAGCTGTGGCCTATGGTGCAGCTGTGCAGGCTGCCATCTTGTGTGGTGATA

AGACCGCTGGAGGTGTGATGACTGCTCTCATCAAGCGTAACACCACCATCCCCACCAAGC AGACTGCCGGCGGTGTGATGACTGCGCTCATCAAGCGTAACACCACCATCCCCACCAAGC AGACTGCCGGCGGCGTGATGACTGCCCTCATCAAGCGTAACACCACCATCCCCACCAAGC AGACTGCTGGTGGTGTGATGACGGCCTCATCAAGCGTAACACCACCATCCCCACCAAGC AAACTGCTGGTGGTGTGATGACGCCTCATCAAGCGTAACACCACCATCCCCACCAAGC AAACTGCTGGTGGTGTGATGACTGCCCTCATCAAACGTAACACCACCATCCCCACCAAGC AAACTGCTGGTGGTGTGATGACTGCCCTCATCAAACGTAACACCACCATCCCCACCAAGC AAACTGCTGGTGGTGTGATGACTGCCCTCATCAAACGTAACACCACCATCCCCCACCAAGC AAACTGCTGGTGGTGTGATGACTGCCCTCATCAAACGTAACACCACCATCCCCACCAACC AAACTGCTGGTGGTGTGATGACTGCCCTCATCAAACGTAACACCACCATCCCCACCAACC * ** ** ** ** ********

Marsupenaeus_japonicus Penaeus_monodon Exopalaemon_carinicauda Pachygrapsus_marmoratus Eriocheir_sinensis Scylla_serrata Scylla_paramamosain Portunus_trituberculatus

Marsupenaeus_japonicus Penaeus_monodon Exopalaemon_carinicauda Pachygrapsus_marmoratus Eriocheir_sinensis Scylla_serrata Scylla_paramamosain Portunus_trituberculatus

Marsupenaeus_japonicus Penaeus_monodon Exopalaemon_carinicauda Pachygrapsus_marmoratus Eriocheir_sinensis Scylla_serrata Scylla_paramamosain Portunus trituberculatus

Marsupenaeus_japonicus Penaeus_monodon Exopalaemon_carinicauda Pachygrapsus_marmoratus Eriocheir_sinensis Scylla_serrata Scylla_paramamosain Portunus_trituberculatus

Marsupenaeus_japonicus Penaeus_monodon Exopalaemon_carinicauda Pachygrapsus_marmoratus Eriocheir_sinensis Scylla_serrata Scylla_paramamosain Portunus_trituberculatus

Marsupenaeus_japonicus Penaeus_monodon Exopalaemon_carinicauda Pachygrapsus_marmoratus Eriocheir_sinensis Scylla_serrata Scylla_paramamosain Portunus_trituberculatus

TCCCACCTGCACCCCGTGGCGTCCCCCAGATCGAAGTCACCTTCGACATCGACGCCAACG TCCCACCTGCTCCCCGTGGCGTGCCTCAGATCGAGGTCACCTTCGACATCGACGCCAACG TCCCACCGGCCCCGAGGCGTGCCTCAGATCGAGGTCACCTTCGACATCGACGCCAACG TTCCCCCGGCGCCCCGAGGCGTGCCTCAGATCGAGGTGACCTTCGACATCGATGCCAACG TTCCCCCAGCACCCCGAGGAGTTCCTCAGATTGAGGTGACCTTTGACATGATGCCAATG TTCCCCCAGCCCCCGAGGAGTCCTCAGATTGAGGTGACCTTTGACATCGACGCTAACG TTCCCCCAGCACCCCGAGGAGTTCCTCAGATTGAGGTGACCTTTGACATCGACGCCAACG TTCCCCCAGCCCCCGAGGAGTTCCTCAGATTGAGGTGACCTTTGACATCGATGCCAATG TTCCCCCAGCCCCCGAGGAGTTCCTCAGATTGAGGTGACCTTTGACATCGATGCCAATG

GTATCCTGAACGTGTCCGCCGTGGACAAGTCTACCGGCAAGGAGAACAAGATCACCATCA GCATCCTGAACGTATCCGCCGTGGACAAGTCTACTGGTAAGGAGAACAAGATTACCATCA GTATCCTGAACGTGTCGCCGTGGACAAGTCTACTGGCAAGGAGAACAAGATTACCATCA GCATCCTGAACGTGTCTGCGGTGGACAAGTCTACTGGCAAGGAGAACAAGATCACCATCA GCATCCTCAATGTGTCTGCTGTGGATAAGTCCACTGGAAAGGAGAACAAGATCACCATCA GCATCTTGAATGTGTCTGCTGTGGACAAGTCAACTGGTAAGGAGAACAAGATCACCATCA GTATCCTCAATGTGTCTGCTGTGGACAAGTCCACTGGAAAGGAGAACAAGATCACCATCA GTATCCTCAATGTGTCTGCCGTGGGACAAGTCCACTGGAAAGGAGAACAAGATCACCATCA

AGTACAAGGCTGATGACGAGAGAGCAGAGGGACCGCATCTCTGCCAAGAACTCGCTGGAGT AGTACAAGGCTGACGATGAGAAGCAGAGGGACCGTATTTCTGCCAAGAACTCCCTCGAGT AGTACAAGGCTGACGATGAGAAGCAGAGGGACCGTATTTCTGCCAAGAACTCCCTGGAGT AGTACAAGGCCGAGGACGAGAGACGAGAGGGACCGTATCGGTGCCAAGAACGCCTCGAGT AGTACAAGGCCGAGGATGACAAGCAGAGAGGACCGCATTGGTGCCAAGAATGCCTTGGAGT AGTACAAGGCCGAGGATGACAAGCAGAGAGAGACCGCATTGGTGCCAAGAATGCCTTCGAGT AGTACAAGGCCGAGGATGACAAGCAGAGAGAGACCGCATTGGTGCCAAGAATGCCTTCGAGT AGTACAAGGCCGAGGATGACAAGCAGAGAGAGCCGCATTGGTGCCAAGAATGCCTTGGAGT AGTACAAGGCCGAGGATGACAAGCAGAGGAGCCGCATTGGTGCCAAGAATGCCTTGGAGT AGTACAAGGCAGAGGATGATAAGCAGAGAGGACCGCATTGGTGCCAAGAATGCCTTGGAGT AGTACAAGGCCGAGGATGATAAGCAGAGGAGCCGCATTGGTGCCAAGAATGCCTTGGAGT

Marsupenaeus japonicus Penaeus_monodon Exopalaemon carinicauda Pachygrapsus marmoratus Eriocheir sinensis Scylla serrata Scylla_paramamosain Portunus trituberculatus

Marsupenaeus_japonicus Penaeus monodon Exopalaemon carinicauda Pachygrapsus marmoratus Eriocheir sinensis Scylla_serrata Scylla paramamosain Scylla_paramamosain Portunus_trituberculatus

Marsupenaeus japonicus Penaeus monodon Exopalaemon_carinicauda Pachygrapsus marmoratus Eriocheir sinensis Scylla serrata Scylla_paramamosain Portunus trituberculatus

Marsupenaeus japonicus Penaeus monodon Exopalaemon_carinicauda Pachygrapsus marmoratus Eriocheir sinensis Scylla serrata Scylla_paramamosain

Marsupenaeus japonicus Penaeus monodon Exopalaemon carinicauda Pachygrapsus_marmoratus Eriocheir sinensis Scylla serrata Scylla_paramamosain

Marsupenaeus japonicus Penaeus monodon Exopalaemon_carinicauda Pachygrapsus_marmoratus Eriocheir sinensis Scylla serrata Scylla_paramamosain Portunus_trituberculatus

AGGAGGACCGCAACAAGATTCTGGAGACCTGCAACGAGACTATCAAGTGGTTGGACATGA AGGAGGACCGCAACAAGATTTTGGAGACCTGCAACGAGACTATCAAGTGGCTGGACATGA AAGAGGACCGCAACAAGATTTTGGAGACCTGCAACGAGACTATCAAGTGGCTGGACATGA AGGAGGACCGTAACAAAATCATGGAGGCCTGCAATGAAACCATCAAGTGGCTGGACGCCA AAGAAGACCGTAACAAGATCCTGGAGGCTTGCAATGAGGCCATCAAGTGGCTTGATGCCA AGGAGGACCGTAACAAGATCTTGGAGGCCTGCAACGAAGCCATCAAATGGCTCGATGCCA AAGAGGACCGTAACAAGATCCTGGAGGCTTGCAATGAGGCCATCAAGTGGCTTGATGCCA AAGAGGATCGTAACAAGATCCTAGAGGCTTGCAATGAGGCTATCAAATGGCTTGATGCCA

ACCAGCTGGGCGAGAAGGAAGAGTATGAGCACAAGCAGAAGGAGATCGAACAGGTGTGCA ACCAGCTTGGCGAGAAGGAAGAGTATGAGCACAAGCAGAAGGAGATCGAGCAGGTGTGCA ACCAATTGGGCGAGAAGGAAGAATACGAACACAAAACAGAAGGACATCGAGCAGATCTGCA ACCAGCTGGGAGAGAAGGACGAGTATGAACACAAGCAGAAGGAACTGGAGCAGATCTGCA ACCAGCTGGGCGAGAAGGAGGAGGAATACGAACACAAGCAGAAGGATCTGGAGCAGATCTGTA ACCAGCTGGGAGAGAAGGACGAGTATGAACACAAGCAGAAGGAACTGGAGCAGATCTGTA ACCAGCTGGGAGAGAAGACGAGTATGAACACAAGCAGAAGGAACTGGAGCAGATCTGCA **** * ** ***** ** ** ** ** ***** * ** *** * ** *

ACCCCATCATTACCAAGATGTACGCTGCTGCTGGTGGTGCTCCCCCCGGTGGCATGCCCG ACCCCATCATTACCAAGATGTACGCTGCTGCTGGTGGTGCTCCTCCAGGCGGCATGCCCG ACCCCATCATTACCAAGATGTACGCTGCTGCTGGTGGTGCTCCTCCAGGTGGCATGCCCG ACCCCATCATTACCAAGATGTACGAGGCTGCAGGCGGTGCTCCTCCCAGGTGGCATGCCTG ACCCTATCATCACTAAGATGTACCAGGCTGCAGGCGGTGCCTCCTCCCAGGTGGCATGCCTG ACCCCATCATCACCAAGATGTACCAAGCTGCCGGTGGTGCTCCTCCAGGTGGCATGCCTG ACCCCATCATCACCAAGATGTACCAGGCTGCAGGCGGTGCTCCTCCAGGTGGCATGCCTG ACCCCATCATCACCAAGATGTACCAAGCTGCCGGTGGTGCTCCTCCAGGTGGCATGCCTG ACCCTATCATCGCCAAGATGTACCAAGCTGCTGGTGGTGCTCCCCCAGGTGGCATGCCTG **** ***** * ******** ***** ** ******* ** ** ******

GTGGCTTCCCAGGTGCTGCCCAGGTGCTGGCGGTGCTGCCCCCGGTGCTGGTGGTTCCT GCGGCTTCCCAGGTGCTGCCCCAGGTGCTGGCGGTGCTGCTCCCGGTGCTGGTGGTTCCT GCGGCTTCCCAGGTGGTGCCCAGGTGCTGGCGGTGCTGCCCCTGGTGCTGGTGGTTCCT GTGGCTTCCCTGGTGCAGGCGGTGCCCCTGGTGCTGCGC---C---CGGCGGTGGTTCAT GTGGCTTCCCTGGTGCTGGTGGTGCTCCAGGTGGTGCCC---C--TGGTGGTGGCTCCT GTGGCTTCCCTGGTGCTGGTGGTGCTCCAGGTGGTGCCC---C---TGGTGGTGGCTCCT Portunus trituberculatus GTGGCTTCCCTGGTGCTGGTGGTGCTCCAGGTGGTGCCC---C---TGGCGGTGGCTCCT * ******* **** * * ** * *** * ***** ** *

CCGGACCCACCATCGAGGAGGTCGATTAAACCATTCCTCGGCGTCTACTAGTCTCATTGT CCGGACCCACCATCGAGGAAGTCGATTAAACGATTCCTCCGCGTCTACTAGTCTCATTGT CCGGACCCACCATCGAGGAAGTCGATTAAACGATTCCTCCACGTCTACTAGTCTCATTGT CTGGGCCCACCATCGAGGAAGTCGATTAAGTGCCACT-CTAGTCTTTGGGTAAAAGACAT CTGGACCCACCATTGAGGAAGTCGACTAAGTGCCA---CTCTAGGCTGGGTACAAGACAT CTGGCCCTACCATCGAGGAGGTCGATTAAAGTGCCAGTCTTGTCTCAAGGCACACGACAT Portunus trituberculatus CTGGTCCTACCATCGAGGAGGTTGATTAAAGTGCCAGTTTAATCTCGAGGCACAACAA * ** ** ***** ***** ** **

> GAATTGTCCATGCAAATCGACCCATCGTAGATCATTCCGCATTTTATTATGATGTTGGT GAATTGTCCATGCAAATCGACCCATCGTAGATCATTCCGCCATTTTATTATGATGTTGGT TCCAT-----ATCCCTCAAATACTCTT---GTTCCTTTTATTATT-----TT _____ TCCAT-----ATCACCCTCGGATCTTT---TGCTCTATTTATTTA-----TT TCCAT-----ATCAGTTCTTAATCTCA---TGCTCTACTTATTTG-----TT TCCAT-----ATCAGTTCTTACTCTCT---TACTCTATTTATTTG-----TT

Marsupenaeus japonicus GGCATGTGCCATTGGCAGTCTTCACATTGCAAGTTTTCCACAACTCTATAGAAAACCATT Penaeus monodon GGCTTGTGCCATTGGCAGACTTCACATTG-CAAGTTTTCAGTAAA-----CCATT Exopalaemon_carinicauda GGCATGTGCCATTGGCAGACTTCACATTTGCAAGTTTTCAGTAAA-----CCATT Pachygrapsus_marmoratus CACTTC----ATTTCATTCCCTTATCT--GAGGTTAAAT--GAA------GTT Eriocheir_sinensis _____ Scylla_serrata Scylla_paramamosain TACAACTTCATT-CTCATTCCTTTTAGTGTGAGGTTACAATAAAA-----GTT TTCTGACTCTATTCTCATTCCTTAAC-T----CAA----CAA----GTT Portunus_trituberculatus TTCCAACTTTACTCTCATTCTTTAAC-T----CGG-----CGG-----TTC Marsupenaeus_japonicus

Penaeus monodon Eriocheir sinensis Scylla_serrata Scylla_paramamosain Scylla_paramamosain Portunus_trituberculatus

_____ ААААСААААТАААТ---GAAATGGACTAAAAAAAAAAAAAAAAAAAA

Marsupenaeus_japonicus Penaeus_monodon Exopalaemon carinicauda Pachygrapsus_marmoratus Eriocheir sinensis Scylla serrata Scylla_paramamosain Portunus trituberculatus

ΑΑΑΑΑΑΑΑ АААААААА---AAAAAA _____ _____ ΑΑΑ-ΑΑΑΑ _____ _____

ANEXO 14. Soluciones utilizadas que se prepararon

RNA latter:

Combinar 40 ml de 0.5 M EDTA, 25 ml de Citrato de sodio 1M, 700 g de sulfato de amonio y 935 ml de agua (grado molecular). Agitar en una plancha caliente (calor bajo) hasta que el sulfato de amonio este completamente disuelto. Dejar que la solución se enfríe y ajustar el pH a 5.2 usando H_2SO_4 1M. Se puede guardar a temperatura ambiente o refrigerada en una botella con tapón de rosca.

Concentraciones finales:

Citrato de sodio 25 mM

EDTA 10 mM

70 g sulfato de amonio en solución de 100 ml (o 700g para 1000ml).

EDTA:

Agua tratada con DEPC (para eliminar RNasas):

Dietilpirocarbonato (DEPC) al 0.1%

Agregar 1ml de DEPC a 1L de agua grado molecular, mezclando toda la noche

y autoclavando para destruir el DEPC por hidrólisis.

Buffer de carga (10 ml.):

EDTA 0.5 M, pH 8.1	2 ml.
Azul de Bromofenol	(0.025 gr /3ml de Agua destilada
desionizada)	
Glicerol	5ml.

TAE

Se hace una solución concentrada de TAE (50x) pesando 242g de Tris base (FW = 121.14) disolviendo en aproximadamente 750ml de agua (grado molecular, agregar 57.1ml de ácido acético glacial y 100 mL de EDTA 0.5 M de pH 8.0. Ajustar la solución a un volumen final de 1000ml, esta solución puede ser almacenada a temperatura ambiente.

Lo que se usa para la extracción de DNA

Solución SNET:

NaCl 400 mM

SDS 1% (w/v)

Tris-Cl 20 mM, pH 8.0

EDTA 5 mM, pH 8.0

Esterilizar la solución en autoclave y guardar a temperatura ambiente.

Buffer TBE (10X):

	1 lt.	500ml.
Tris Base	108 gr.	54 gr.
Ácido Bórico	55 gr.	22.5 gr.
EDTA 0.5M pH 8.0	40ml.	20ml.

Disolver el Tris Base y el ácido bórico en agua desionizada en un volumen no mayor de 200 ml. Adicionar el EDTA y ajustar al volumen final con agua desionizada.