
UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA
INSTITUTO DE INGENIERÍA

MAESTRÍA Y DOCTORADO EN CIENCIAS E INGENIERÍA

 “ OBJECT RECOGNITION BASED ON DISTRIBUTED SCANNING

OF A MOBILE ROBOTIC GROUP USING 3D OPTICAL TECHNICAL

VISION SYSTEM ”

TESIS PARA OBTENER EL GRADO DE:

DOCTOR EN CIENCIAS

PRESENTA

MYKHAILO IVANOV

DIRECTOR

DR. OLEG SERGIYENKO

CODIRECTOR

DRA. VIRA TYRSA

Mexicali, B. C. Agosto 2020

OBJECT RECOGNITION BASED ON DISTRIBUTED SCANNING

OF A MOBILE ROBOTIC GROUP

USING 3D OPTICAL TECHNICAL VISION SYSTEM

By

Mykhailo Ivanov

A dissertation submitted in partial fulfillment of
the requirements for the degree of

DOCTOR OF SCIENCE

UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA
Instituto De Ingeniería

August 2020

© Copyright by Mykhailo Ivanov, 2020
All Rights Reserved

© Copyright by Mykhailo Ivanov, 2020
All Rights Reserved

To the Engineering Institute of Autonomous University of Baja California:

The members of the Committee appointed to examine the dissertation of Mykhailo Ivanov find

it satisfactory and recommend that it be accepted.

Oleg Sergyienko, Ph.D., Chair

Vira Tyrsa, Ph.D., Chair

Julio Cesar Rodríguez-Quinonez, Ph.D.

Wendy Flores-Fuentes, Ph.D.

Fabian Natanael Murrieta-Rico, Ph.D.

ii

ACKNOWLEDGMENT

We want to extend our gratitude to the Instituto de Ingeniería de Universidad Autónoma de Baja

California (UABC), and the Consejo Nacional de Ciencia y Tecnología (CONACYT) for providing

the resources that made this research possible.

iii

OBJECT RECOGNITION BASED ON DISTRIBUTED SCANNING

OF A MOBILE ROBOTIC GROUP

USING 3D OPTICAL TECHNICAL VISION SYSTEM

Abstract

by Mykhailo Ivanov, Ph.D.
Universidad Autónoma De Baja California

August 2020

Chair: Oleg Sergyienko

Robotic group collaboration in a densely cluttered terrain is one of the main problems in mobile

robotics control. This thesis describes the basic set of tasks solved to model a robotic group be-

havior during the distributed search of an object (goal) with the parallel mapping. The navigation

scheme uses the benefits of the authors’ original technical vision system (TVS) based on dynamic

triangulation principles. According to the TVS output data, fuzzy logic rules of resolution stabi-

lization were implemented; this with the aim to improve the data exchange. Modified dynamic

communication network model and implemented the propagation of information with a feedback

method to improve the data exchange inside the robotic group. For forming the continuous and

energy-saving trajectory authors are proposing to use the two-steps post-processing method of

path planning with polygon approximation. The combination of our collective TVS scans fusion

and modified dynamic data exchange network forming method with adjustment of the known path

planning methods can improve the robotic motion planning and navigation in unknown cluttered

terrain.

iv

Table of context

Page

ACKNOWLEDGMENT . iii

ABSTRACT . iv

List of tables . viii

List of figures . ix

Objectives . 1

1. General objective . 1

2. Specific objectives . 1

3. Problem definition . 2

4. Hypothesis . 3

5. Justification . 3

1 Introduction . 5

1.1 Inspirational models for robotic behavior . 7

1.2 Tasks of robotic swarm implementation . 10

1.3 Swarm robotic projects . 13

2 Technical vision system . 19

2.1 Vision systems . 21

2.1.1Traditional Vision-Based Collision Detection Methods 21

2.1.2Bio-Inspired Collision Detection Methods . 22

v

2.1.3ToF camera principle . 22

2.1.4Camera-based Systems . 24

2.2 Historical background . 25

2.3 Structure and working principles . 26

2.3.1Surface Recognition Improvement . 28

2.3.2Data reduction . 31

3 Data exchange for robotic group . 37

3.1 Spanning tree forming for swarm robotics . 41

3.2 Leader based communication . 43

3.3 Feedback implementation and method improvement 47

3.4 Implementation results . 51

4 Path planning methods . 58

4.1 Algorithm review . 60

4.2 Navigation algorithms analysis . 63

4.3 Navigation using technical vision system . 63

4.4 Collision detection and obstacle avoidance . 65

4.5 Section conclusion . 76

5 Simulations and experiments . 77

5.1 Modeling system structure and group behaviour . 77

5.1.1Basic behaviour scenario for robotic group . 77

5.1.2Simulation frameworks . 83

5.2 Robot entity . 86

5.3 Influence of data exchange on path planning . 88

5.4 Effectiveness of robotic group . 94

5.4.1Terrain sectoring . 94

5.4.2Effectiveness calculation . 96

5.4.3Scenes description for modeling and analysis 100

vi

5.4.4Secondary objectives placement for surface mapping 102

5.4.5Unique data as an index of effectiveness . 103

5.4.6Scene completion time . 112

5.4.7Informational entropy reduction analysis . 115

5.5 Section conclusion . 116

6 Conclusions . 118

6.1 Conclusions . 118

6.2 Future works . 122

Publications . 126

1. Articles with impact factor . 126

2. International conferences . 127

3. Book chapters . 129

4. Copyrights . 129

References . 143

Appendix A - Robotic group modeling system . 144

Appendix B - Network structure modeling system . 209

vii

List of tables

4.1 Motion planning comparing results . 75

5.3 Motion planning comparing results (the normalized units of framework used for

distances) . 92

5.4 Experimental scenes description . 101

viii

List of figures

1.1 Natural swarms . 8

1.2 Swarm robotics projects . 16

1.3 Main tasks . 18

2.1 Autonomous robotic system . 19

2.2 Technical Vision System . 27

2.3 Examples of surfaces scanned by TVS . 32

2.4 Field of view fragmentation . 33

2.5 FOV with opening angle for low resolution for one meter arc length 34

2.6 Opening angle comparison . 34

2.7 Opening angle equivalents . 35

2.8 Average values of point cloud density . 36

3.1 Models of data transferring . 40

3.2 Calculated networks . 42

3.3 Network modeling results: 1 to 50 nodes with cross-validation 43

ix

3.4 Examples of network levels estimation based on geometrical center search 43

3.5 Membership functions . 46

3.6 Functions for network layer determination . 48

3.7 Margin data about environment (sequence diagram) 50

3.8 Information exchange with centralized management 52

3.9 Total amount of sent and processed requests . 52

3.10 Timeout in request processing . 53

3.11 Total amount of sent, received and processed requests with signal loss 54

3.12 Information exchange using strategies of centralized hierarchical control (shown 2

levels) . 54

3.13 Total amount of sent, received and processed requests with signal loss using cen-

tralized hierarchical control . 55

3.14 Total amount of sent, received and processed requests with signal loss using cen-

tralized hierarchical control . 56

3.15 Comparison of the number of processed requests before and after leader changing

system implementation . 57

4.1 Dynamic Path Planning Algorithm . 60

4.2 Results for “one to all search” . 64

4.3 Results for “all to all search” . 65

x

4.4 Path planning . 66

4.5 Obstacle avoidance . 67

4.6 Obstacles types . 68

4.7 World representation and dead reckoning with two-step post processing 70

4.8 Obstacle avoidance with Bezier curve . 72

4.9 Obstacle avoidance with Bezier curve . 73

4.10 Obstacle avoidance using Dubins path . 74

4.11 Obstacle avoidance with Dubins path and Bezier curves 75

5.1 Behaviour model of robotic group . 79

5.2 Basic algorithm of robotic group (pseudo code) 81

5.3 System structure . 86

5.4 Robot entity . 87

5.5 Pioneer 3-AT mobile robotic platform . 87

5.6 Scenes used for modeling . 89

5.7 Length of trajectories . 90

5.8 Comparing trajectory lengths for each of the scenes in percent 93

5.9 Terrain sectoring . 95

5.10 Binary maps of environment . 96

xi

5.11 Overlapped individual binary maps . 96

5.12 Individual maps overlapping . 99

5.13 Unique and general data comparison for each robot in group 100

5.14 Examples of used scenes . 101

5.15 Secondary objectives placement . 102

5.16 Secondary objectives placement on testing environment 103

5.17 Example of obtained tracks and scanning sectors 103

5.18 Effectiveness of two robots group . 104

5.19 Effectiveness of three robots group . 104

5.20 Effectiveness of four robots group . 105

5.21 Effectiveness of five robots group . 106

5.22 Avaraged overlapped values of group effectivenes 107

5.23 Effectiveness of five robots group (Scenario #1, Scene #1) 107

5.24 Effectiveness of five robots group (Scenario #1, Scene #2) 108

5.25 Effectiveness of five robots group (Scenario #1, Scene #3) 108

5.26 Effectiveness of five robots group (Scenario #2, Scene #1) 109

5.27 Effectiveness of five robots group (Scenario #2, Scene #2) 109

5.28 Effectiveness of five robots group (Scenario #2, Scene #3) 110

xii

5.29 Effectiveness of five robots group (Scenario #3, Scene #1) 110

5.30 Effectiveness of five robots group (Scenario #3, Scene #2) 111

5.31 Effectiveness of five robots group (Scenario #3, Scene #3) 111

5.32 Comparing the detected data . 112

5.33 Tiempo de finalización de la escena . 112

5.34 Scenario#1 completion time . 113

5.35 Scenario#2 completion time . 113

5.36 Scenario#3 completion time . 113

5.37 Average completion time . 114

5.38 Normalized completion time . 114

5.39 Entropy reduction speed . 116

6.1 DBSCAN clustering illustration . 123

6.2 Example of DBSCAN implementation . 124

6.3 Extracted objects . 124

6.4 Implementation of approach for structural health monitoring 125

xiii

Objectives

General objective

Create a methodology of optimized path planning improvement by data transfer integration for the

mobile homogeneous robotic group, using the dynamic network graph configuration and 3D laser

technical vision system, for the conditions of group of robots equipped with the original 3D laser

technical vision system, moving in concert to visit all the points of interest to create a 3D point

cloud of the continuous environment.

Specific objectives

• Development of behaviour model for robotic group.

• Analysis of technical vision approaches and system selection.

• Development of the data transferring model for the robotic swarm.

• Development of modeling system for data transferring analysis.

• Optimization of data transferring for small amount of robots.

1

• Analysis of existing path planning methods.

• Selection and adoption of the path planning method according to the specifications of the

selected technical vision system.

• Improvement of the selected path planning method by adding the steps of post processing.

• Development of simulation software for method analysis.

• Evaluation of the data transferring influences on robotic group path planning.

• Analysis of robotic group effectiveness.

Problem definition

The dynamic network forming system based on the leader changing method is able to improved

data exchange within the robotic group and to improve navigation by sharing previously detected

obstacles by other robots within a group.

This methodology can be used to define the robotic behavior and to develop a navigation system

that allows the robot to move freely in an environment with obstacles the path is dynamically

recalculated, in response to the detected changes in surroundings. Since robots are equipped with a

laser-based technical vision system it allows robots to detect the exact position of detected obstacle

and create projectiles on the navigation map to define impassable areas, that will further improve

navigation.

The presented navigation system consists of two-step post-processing path planning system

based on A* algorithm, technical vision system for obstacle detection and improved by leader

2

changing method that allows robots to calculate optimized path inside of pre-known environment

(detected buy robots in a group) or even avoid parts during navigation in case of a dead-end. These

allow robots to navigate successfully and without collisions through an unknown environment and

safely reach a robot’s points of interest and goal.

Hypothesis

The dynamic network forming system based on leader changing method is able to improved data

exchange within the robotic group and to distribute obtained map elements (obstacles detected by

integrated technical vision system). The methodology can be implemented in a mobile robot to

improve navigation of robotic group/swarm. By obtaining data from technical vision system, robot

will update it’s map and send data to other robots, then the navigation system will calculate the

optimal trajectory using the merged map. This allows the mobile robot to navigate more efficiently

in different types of environment without the need of revisiting the areas detected by other robots

within the group.

Justification

The purpose of the thesis is to develop a data exchange methodology for the robotic group/swarm

and to analyse it’s effect on the navigation in the unknown environment. While other researches take

into consideration only one problem at a time ([1], [2]) this thesis proposes the complex research

of main aspect of mobile robot behavior based on the specified structure and constants.

This research was carried out entirely in the Optoelectronics and Measurements Laboratory

3

of the Engineering Institute of the Autonomous University of Baja California (UABC), Campus

Mexicali, under the supervision of the Head of the Optoelectronics Laboratory and my thesis

director, Dr. Oleg Sergiyenko.

Software design, experimentation, analysis, and presentation of results were made in the form

of journal articles, publications and reports in international conferences, and copyrights.

The type of research that was carried out can be defined as an applied research project, which

promotes both theoretical and practical applications, since the methodology used (leader changing

method) to dynamically created data exchange network, it is applied in the developed modeling

software. This methodology in turn is implemented in the behavior of the mobile robotic group

presented in the research.

4

Chapter One

Introduction

Swarm Robotics is a research field that studies how systems composed of multiple autonomous

agents (robots) can be used to accomplish collective tasks, where the tasks cannot be accomplished

by each individual robot alone, or are carried out more effectively by the robots as a group. Dudek

et al. [3] identified the following categories for tasks executable by robots: tasks that are inherently

single-agent, tasks that may benefit from the use of multiple agents, tasks that are traditionally

multi-agent, and tasks that require multiple agents. The swarm robotics discipline focuses on the

last three categories, and past works have demonstrated in many application domains that using

multiple agents to solve a task in a distributed manner allows working with significantly less

complex behavior of agents at the individual level.

Swarm robotics, also known as Multi-Robot Systems (MRS) have been proposed in the last

decade in a variety of settings and frameworks, pursuing different research goals, and successfully

applied in many application domains. Special attention has been given to MRS developed to

operate in dynamic environments, where uncertainty and unforeseen changes can happen due to

the presence of robots and other agents that are external to the MRS itself.

5

AnMRS can be referred to as a group of robots working in the same surroundings. Nevertheless,

robotic systems can be presented in different ways one as a set of sensors that are used for data

acquisition and processing to human-like as a more complex part of machine family, those have the

ability to interact with surroundings in different ways. Also, to define a level of robot autonomy is

another hard task, cause some of them have to interact with an environment and others just have

to be able to accomplish a simple set of tasks programmed by an operator. The mobile platform

discussed in the current thesis is a fairly complex platform equipped with the technical vision

system that is able to execute tasks of detection, navigation and communication. In the end, three

main aspects can be considered to describe the subset of MRS:

• The rationale for the design of the MRS;

• The basic functionalities and technologies (both hardware and software) used in the MRS

development;

• The tasks that the robots should perform and the intended application domains.

The expression “swarm intelligence”, which is now widely used in the field of swarm robotics,

refers to the superior capabilities of a swarm of agents compared to its single individuals. The

local events triggered by swarm members during execution of a task translate into a global behavior

which often transcends the individual capabilities, to the point that many collective tasks can be

successfully done by robots that are not explicitly programmed to execute those tasks: the global,

macroscopic dynamics is said to emerge from interactions of swarm members between each other

and with the environment.

Nowadays, the use of swarm intelligence systems can be found in research articles of civil

6

related tasks, such as autonomous cars, unmanned aerial vehicles (UAV) etc. Driven by scientific

research, swarm intelligence systems are prevalent and specialized for multipurpose tasks that

require a group of robots to cover different types of unknown environments (cluttered or rugged

terrains, indoor premises, etc.). In articles such robotic groups are referred as swarm robotics [4]

[5] [6].

Swarm robotics is a promising technology that can be deeply involved in daily human life. As

an example smart autonomous vehicles can be found in the use of Google [7], Tesla, Uber, etc.

Right now they are not so affordable, however in future they will be a huge part of social life from

smart cities and campuses with autonomous personal mobility vehicles [8] to simple use in smart

buildings as janitors.

In these matters exists two principal tasks – navigation and communication. The first is used

for obstacle avoidance and moving to the target location and second is to give the robot a tool to

"talk". Communication helps a swarm to achieve more complete and structured information about

the surroundings and improve their navigation as individuals.

Further sections will consider a solution for such problems and review the influence of data

exchange on the path planning in terms of unknown surroundings.

1.1 Inspirational models for robotic behavior

Development of distributed artificial intelligence [9] (republished [10]) is a subject ofmany complex

researches related to the multi-agent systems [11]. The behavior models used in these systems take

their origin in adoption of social animal group activities. In bacteria colonies, fish schooling,

animal herding, ants and etc. (Fig. 1.1) individuals have primitive abilities, but while in-group they

7

become a complex organization with improved surrounding interactions, signaling communication

and data transmission [12]. Such natural swarms are based on a simple set of rules used by each

individual. As a result with common efforts the homogeneous groups can complete complex tasks.

Transferring of this behavior has created the principles of swarm intelligence ([13], [14]).

(a) Fish schooling (b) Ant colonies

(c) Bird crowds (d) Human beings

Figure 1.1 Natural swarms

Primates usually have complex collaboration inside the group, they can have different types of

social interactions [15], recognize their relatives [16] and some of the species can use some of the

human language aspects.

8

Bacteria and their colonies are usually functioning as biofilms. They have an ability to cell

communication [17] and use the benefits of task distribution, collective defense, etc. The bacterial

colony has higher resistance to antibacterial agents than individuals of the same type of bacteria

[18].

Bird crowds during the migration, they can locate their destination point according to inner

sensing, landmarks, etc. [19].

Ant and Bee colonies communication in such type of colonies is based mostly on pheromones

[20]. Ants are able to path planning by leaving a pheromone trail, where in case of optimal

rout more and more ants are using it [21]. According to suggestion in [22] ants implement role

distribution based on their previous performance during foraging.

Locusts while increasing amount of insects in-group, they convert the type of their movement,

from chaotic to aligned, this with the capacity for a quick transference of directional information

[23].

Fish schools each fish by analyzing the neighbors’ movement can avoid collision while swimming

in phalanxes[24]. Fish schools are better in foraging [25] and predator evasion [26].

Human beings Dyer et al. in [27] have shown that in the group of humans can occur leadership

without any verbal communication or other obvious types of signals. Such behaviorism shows

the hierarchical structure with role distribution. In case of growing down of the population

collaboration within the group becomes more complex and each role becomes more important. A

swarm of individuals in this case can solve complex tasks easily while an individual cannot.

9

1.2 Tasks of robotic swarm implementation

According to the this brief review of natural swarms can be found a list of tasks that robotic swarm

can be capable of.

The next list presents some examples according to their recursivity in descending order.

Navigation is a task where robot needs to find location of an object using his sensing capabilities

and the help of other robots. In this task an individual robot (not a group) must reach an object of

interest (target).

Foraging is another studied scenario in swarm robotics where a group needs to find a food source.

It takes origin in the behavior of ants in colonies. Evolving robots [28] is a perfect example of this

behavior implementation.

Multi-foraging is a more complex type of foraging task. A robotic group needs to find and collect

different types of objects and after bringing them to a specific place for this object type. This task

has an application in warehouses, rescue missions, hazardous terrain cleanups, etc.

Odor source localization is aimed to solve the problem of odor source search. In [29], was

described as a project where robots are using binary odor sensor.

Collective decision-making is a study of many researches like [30] (authors proposed decision

making based on majority rule model), [31] (charges of preferred labors), [32] (site selection).

Collective decision-making is applied to swarm robotics during the flocking, path formation,

clustering etc.

Object clustering and sorting are similar to foraging tasks, but in this case, the goal is to find

objects in the environment and to place objects near to each other.

10

Object assembly is a task related to construction problems. The task has a relationship with

clustering, but in this case, it is focused on relationships and physical connections between objects

(robots have to create an object of predefined shape). In [33] is described an example of wall

construction by robots, in [34] robots were trying to figure out if the block they use can be attached

or not with help of local communication, in [35] were modeled a process of building using blocks

with attached LEDs.

Collaborative manipulation refers to a task where robotic swarms have to interact with objects.

For achieving this task and avoiding centralized coordination (control) robots can use simple

behavior rules. Ant colonies can be used as an example.

Self-assembly is a task of local interaction within the group, where robots need to establish a

physical connection to each other. The examples can be found in [36] (swarm-bots project), authors

of [37] used s-bots with the ability to decide who will use its grip to attach to other s-bot. Self-

assembly also takes its place during the hole avoidance [38] and navigation in hazardous terrains

[39].

Human-swarm interaction task is devoted to increase the performance of robotic swarms. The

task can be described in a next way: if human operation have an information that can help robotic

swarm to achieve their goal he can share it, but it cannot be interpreted as a direct controlling.

In [40] authors proposed a method whereby starting direct control over one robot can influence

a group by changing robot behavior. In [41] were used a similar method but with leader system

implementation. Kolling et al. [42] proposed methods of robot behavior switch and manipulation

with the environment to force the robot to change its behavior.

11

Deployment is a scenario where a group of robots must autonomously enter the environment. The

task is useful for the unknown terrain mapping.

Path formation is a process that refers to a collective movement formation from point to point

while minimizing the time to reach the destination. This task usually occurs during the foraging

and chain formations.

Coordinated motion is used during the modular robotic structure to achieve coordinated move-

ment in a common direction.

Flocking is a task of the swarm to "stay together". It is based on local interaction within the

group. Robots’ sensing systems (vision, laser range finding, sonar, infrared or tactile sensors) and

communication abilities are used to keep the group as a compact formation. Such behaviorism is

adopted from birds, fish schools, etc.

Morphogenesis exists as an extension of self-assembly. In the case of morphogenesis, robots are

tasked to create a specific shape. For example, [43] s-bots attached to a structure used LEDs for

communication to tell how others should be attached.

Aggregation is the task of grouping individual robots in a dedicated place. The behavior model is

based according to animal species observation.

Task allocation is a process of labor division within the group. This ability helps to increase the

efficiency of work done by a swarm.

Group size estimation is a "sub-task" for different applications of swarm robotic, used to coordi-

nate movement, self-assembly, morphogenesis, etc. Authors in [44] describe the method using the

propagation of information through the group in case of impossible direct communication within

12

the group.

A more detailed review of the mentioned tasks with their solutions can be found in [45].

1.3 Swarm robotic projects

During the last decade, the growth of small and mobile computing devices’ capabilities increased

the interest in swarm robotics research topics. Yet still many of the swarm robotics projects are in

the development or even modeling stage [46]. Earlier in the 80s existed other attempts to create

robotic groups like SWARMS [47] and ACTRESS [48]. This section will review some of the

existing projects and their design.

Pheromone robotics project (Fig. 1.2a) was initiated in 2000 [49]. The idea of the project is to

use a large number of small robots for different tasks by achieving a swarm behaviorism [50]. In

robots was implemented the pheromone idea, by using beacons and sensors mounted on robots.

iRobot swarm project (Fig. 1.2b) was made by Massachusetts Institute of Technology (MIT).

Swarm includes more than 100 cooperating robots [51] [52].The main idea is to create the solution

for graceful degradation of the swarm.

E-puck education robots is a group of small robots (Fig. 1.2c) that were made for educational

purposes like programming, human-machine interaction, signal, and image processing. They are

cheap, have a simple structure, and have possibilities to use extensions [53].

Kobot project (Fig. 1.2d) consists of mobile robotic platforms equipped with IR range finder

system for obstacle detection [54].

13

Kilobot project (Fig. 1.2e) is aimed to create collective behaviorism with hundreds or more

individuals in swarm [55]. Robots are easy to assemble and have capabilities for some simple

operations like charging, moving, updating programs, etc.

I-Swarm (Fig. 1.2f) came from the University of Karlsruhe in Germany [56]. Swarm consists of

micro-robots with the abilities of "collective thinking" and to recognize its kin.

Multi Robot Systems (Fig. 1.2g) [57] initially were developed in University of Alberta in Edmon-

ton, USA, studies robots collective behavior. This institution has several robot systems (Multi-Robot

Systems (MRS)) in development. The project is devoted to problems of collective decision-making.

Project SwarmBot (Fig. 1.2h) was made by iRobot company [58]. Swarm uses small robots that

can work together to carry out certain actions. It is expected that the SwarmBot robots can join

a group of up to ten thousand and perform tasks such as a search for mines, research of unknown

territory (including on other planets), detection of harmful substances, etc.

Project Centibots (Fig. 1.2i) uses small robots that can work in-group and autonomously [59],

they are not using a centralized management system. Their goal is to map the enclosed space

and perform some tasks. Robots are using the roles distribution system based on interaction and

depending on the circumstances.

Project Swarmanoid (Fig. 1.2j) studies the behavior of inhomogeneous groups of robots [60].

The considered task was in which a team of wheeled robots, a flying robotic spy and the handling

robot jointly found the object (book), and manipulated it.

Evolving robots (Fig. 1.2k) were created in the Swiss Laboratory of Intelligent Systems (Poly-

technic School, Lausanne) during the "evolution" of robots studies [28]. Robots were evolving

14

gene that determines behavior. A group of 10 robots competed for food. The challenge was to find

robots "food source", which is a luminous ring on one end of the arena. Robots can "communicate"

with each other by light signals. The evolution of robots in experiments sometimes leads that even

the robots were taught to deceive opponents, letting the "wrong" light, being near the trough.

Robots scouts (Fig. 1.2l) were designed for intelligence [61]. The project was developed in the

distribution centers of robotics, University of Minnesota, USA., the robot has a very high quality

from a technical point of view. The robot can work in a team. Its design allows you to "shoot"

using a device resembling an automatic grenade launcher. The robot is designed to help the police

and rescue services in carrying out dangerous operations.

According to the mentioned projects, [12] and [62] the next advantages of swarm robotics can

be described:

• Parallel processing – swarm can perform various tasks simultaneously (each of swarm can

perform its scheduled task), this would save time for achieving a common goal.

• Scalable group – including a new individual to a swarm can be performed without any

modification of the software or hardware.

• Tasks enlargements – swarm robotics systems can solve the tasks that are impossible for

individuals.

• Fault tolerance (graceful degradation) – swarm can continue performing its tasks even what

the part of the swarm is unable to work. Useful during the tasks in a hazardous environment.

• Distributed sensing and action – distributed on the terrain swarm robotics system can be used

as a sensing network for data accumulation and action performing system.

15

(a) Pheromone robot (b) iRobot swarm project (c) E-puck education robot

(d) Kobot project (e) Kilobot project (f) I-Swarm project

(g) Multi Robot Systems (h) Project SwarmBot (i) Project Centibots

(j) Project Swarmanoid (k) Evolving robots (l) Robot scout

Figure 1.2 Swarm robotics projects

16

However, can be allocated a several specific problems that need to be resolved. Among them

are:

• Unpredictable environmental dynamics;

• Imperfect and inconsistent knowledge of the environment;

• Variety of options to achieve the goal, the team structures, roles, etc.;

• A complex behavior pattern of teamwork;

• Problems related to the territorial distribution of swarm and its localization;

• Communication problems or data exchange (network architecture, protocols, etc.);

• Data loss and storage redundancy.

So next section will cover the main questions of robotic group behaviour: a vision system for

robot as a part of simultaneous localization and mapping (SLAM), route planning, data transferring

(communication) within the group and complex modelling with analysis.

17

Figure 1.3Main tasks

18

Chapter Two

Technical vision system

Each mathematical / computing unit in the conventional algorithm of autonomous robot (Fig. 2.1)

during its work is based on data obtained from its sensors.

Figure 2.1 Autonomous robotic system

For the task of navigation are generally used sonars as a basic solution, laser rangefinders as a

more accurate alternative for sonars, LIDARs (can return the detailed surroundings, but depends on

its form factor), camera-based robots ([63], [64]) and drones [65] or more expensive equipment like

ToF (Time-of-Flight) cameras [66]. For some tasks, it is possible to use only the inertial navigation

system [1].

19

Plenty of the researches and solutions in the field of obstacle detection and navigation, as

mentioned before, are based on cameras and laser systems. As an advance will be reviewed some

works.

In [67] authors presenting a lightweight, inexpensive insect-based stereo-vision system. They

used two cameras placed very similar to honey bee eyes and received a field-of-view around 280°by

150°. In [68] authors are using a camera vision for real-time obstacle avoidance with biped robots.

Article [69] describes the obstacle avoidance for a pocket drone based on data from the stereo

camera. In [70] solution uses Arduino with pixy camera by a wheeled robot for the line tracking

task and obstacle avoidance. The solution mentioned in [71] can be applied for autonomous cars

and shows a method of vehicle detection system design based on stereo vision sensors.

Article [72] describes the benefits of the use of long-wavelength infrared stereo vision and

3D-LIDAR combination in case of fire environments. Another publication [73] presenting MEMS-

based LIDAR systems for use in an autonomous vehicle. In [74] were a proposed method of

real-time LIDAR odometry and mapping and its application on drones and cars.

Also, such systems can be used for similar tasks in other areas. Authors of [75] used an

industrial robotic hand with a mounted 3D camera-based vision system for object scanning, similar

to them in [76] are using industrial robots with a camera to track motions of the second robot, in

[77] position of the robot is controlled by tracking marker with LEDs and in [78] were proposed

human posture tracking and classification using cameras stereo vision and 3D model matching.

Also can be mentioned [79] Stereo vision-based automation for a bin-picking solution.

As can be seen, laser-based systems are more suitable for automobile navigation purposes. It

is explained by their surrounding representation principles that helps to avoid long post-processing

20

like in cameras.

However, our robotic group highly probablemoves in low light conditionswith a large number of

obstacles, where the aforementioned vision systems may not always give the correct results during

post-processing. Therefore, working in such difficult conditions, the authors’ novel real-time vision

system TVS can satisfy with its accuracy and data representation.

The next section will provide a detailed description of the real-time vision system used in the

research.

2.1 Vision systems

2.1.1 Traditional Vision-Based Collision Detection Methods

Vision-based collision detection is widely used in robotics [80], [81]. For example, Saha et al. [82]

proposed a monocular obstacle detection and avoidance method for UAV. They used a mathematical

model to estimate the relative distance from theUAV’s camera to an obstacle by detecting the feature

points in the UAV’s field of view, which is not an on-board system. Yaghmaie et al. [83] proposed

a novel method for robots to navigate in dynamic environments called escaping algorithm which is

based on force field method which belongs to the family of simultaneous localization and mapping.

In their algorithm, the movement of dynamic obstacles is predicted by the Kalman filter for collision

detection combined with a potential field approach. Traditional visual-based collision detection

methods need to process the massive volume of images in real-time or need a real-world model

created in advance, which is either difficult to be completed on-board for a micro-robot with limited

resources or hardly able to cope with dynamic environments.

21

2.1.2 Bio-Inspired Collision Detection Methods

There are additionally a few bio-inspired collision avoidance and route planning techniques, a large

portion of which depend on elementary motion detector (EMD), for instance, Zhang et al. [82],

Badia et al. [83], and Franceschini et al. [84]. EMD-based techniques could be hard to apply

because of its intrinsic character -— the presentation is limited inside certain visual paces. The

lobula giant movement locator (LGMD) based techniques can adapt to a large portion of the future

collisions, without paying attention on the visual speed. Blanchard et at. [85] was the first to bring

LGMD-based neuron systems into robots for constant impact recognition and tried it with Khepera

I robots. Badia et al. [86] proposed one type of LGMD based impact recognition model and tried

it on a "Strider" robot with a remote camera to catch and transmit pictures to PC for handling.

Silva et al. [87] proposed another LGMD model which joined two works from [88] and [89] for

increasingly strong collision detection, which concentratedmore onmodeling rather than embedded

systems development. There has been put forth an attempt on actualizing bio-inspired techniques

in enormous scope joining chips like field-programmable cluster (FPGA), Meng et al. [89] added

extra cell to recognize the development top to bottom, Harrison [90] proposed a simple integrated

circuit for collision detection dependent on EMD, and Okuno and Yagi [91] actualized blended

analog/digital incorporated circuits with FPGA. These attempts are not reasonable for smaller scale

robots, either due to the enormous size or the powerful utilization of the FPGA circuits.

2.1.3 ToF camera principle

Profundity estimations depend on the notable time-of-flight (ToF) standard [92] by utilizing either

pulsed or ceaseless wave (CW) modulation. Some of ToF cameras are using both of the modulation

22

types. To demonstrate more deep principles will be reviewed CW-based ToF cameras. Sensors

based on discrete pulse modulation measure the time that the optical pulse trips to calculate depth,

while sensors based on lock-in measure the phase difference between the transmitted and received

signals.The system emits near-infrared light (NIR) through a LED and then reflects it back to the

sensor. The amount of light reflected by the scene is sampled by each pixel on the sensor at even

intervals in each cycle (m0, m1, m2, and m3) so that its phase (Eq.2.1), offset (Eq.2.2) and amplitude

(Eq.2.3) can be measured in parallel.

φ = arctan(m3 − m1

m0 − m2
) (2.1)

B =
m0 + m1 + m2 + m3

4
(2.2)

A =

√
(m0 + m1)2 + (m2 + m3)2

2
(2.3)

This phase demodulation procedure is ordinarily alluded to as "four barrel" examining, which

can easily calculate the target depth (Eq.2.4).

D = L
φ

2π
(2.4)

To predict the quality of the measurement used the intensity (B) and amplitude (A). The

modulation frequency (fm) of the emitted light determines the unambiguous distance range of the

sensor (Eq.2.5) where c is the speed of light in vacuum.

L =
c

2 fm
(2.5)

23

2.1.4 Camera-based Systems

To these group fits several techniques [92], for example, profundity fromfocus/defocus/obscure,

profundity-from-movement, profundity-from-shape, sound system and organized light triangulation

strategies [93]. Profundity-based techniques are using focus variation, motion estimation, and shape

change determination. Thosemethods produce ambiguities and singularities, and frequently require

utilizing numerous pictures to solve the problem, which infers extra time, space and computational

expenses. On the other hand, profundity data acquired with ToF cameras has high accuracy using

single frame of data (image). Triangulation strategies can be isolated into passive (stereo vision)

and active (structured light methods techniques).

Passive triangulation methods require a par of cameras isolated by a standard that determines

a restricted working profundity range (the higher profundity, the bigger base is the required).

These methods have to solve the next issue: determine corresponding points from cameras pictures

that are a references of a similar 3D point. This is a computationally costly and complex issue,

as stereo vision systems frameworks can’t comparing points in homogeneous surroundings [94].

ToF cameras and Laser-based systems does not have this problem cause of they have these data

instantaneously.

Active triangulation methods Oppositely to the former techniques, active triangulation ones

require just a single camera and an organized light emitter that gives minimum of one pattern

line. Comparing with with ToF cameras and laser-based vision systems current method has some

disadvantages: incomplete/missing profundity estimations, a need of exceptional power supply and

concentrated light, checking of the light through the scene, and an exceptionally controlled light

conditions that prompts a major limitation in local or open air application of autonomy vehicles.

24

2.2 Historical background

All the solutions are based on the novel author’s technical vision system (TVS)[95] that uses a

dynamic triangulation principle [96]. In [97] proposed method for improving resolution of 3D

TVS and its implementation for surface recognition. This approach to obstacle recognition was

implemented for the single robot navigation in work [98]. The concepts of data transferring within

robotic group firstly presented in [99]

Further advances of author’s 3D TVS found its use and development in works [100] and [101].

Here system received its internal changes and appliance as a machine vision system for UAV.

Despite all of researches and results presented in this section still exist a common problem:

all of them are dedicated to one problem at a time. That is why the presented research is aimed

to a joint solution taking into consideration problems of machine vision, path planning and data

transferring using the mentioned earlier 3D TVS.

The herein presented real-time technical vision system (TVS) is appropriated novel tool for

optimization of the considered task of the robotic group collective behavior improvement. The

advantages of our system when compared with other methods of 2D/3D laser sensors, possessed in

the following points:

- Original TVS possess the property of natural physical filter [96], [102] of redundant informa-

tion about robot surrounding, adjusting the quantity of the scanned points within FOV according

to the requirements of current practical application.

- This TVS in comparison to other methods of 2D/3D laser sensors has significantly wider

FOV [96], [103] due to its original patented rotational sensory part. This circumstance permits two

advantages: better simultaneous capture of the detailed data about surrounding [104], and wider

25

possibility to vary the scenario sectorization between n participants equipped with identical TVS

[99], [105].

- Present TVS, as shown in [106] represents the data naturally in the same Cartesian Coordinate

System where operating the robot, which delete the necessity of any post-processing time, and in

the same notation system as robot state matrix, which simplify any additional transformation within

scenario.

- The multiple experimental results [107], [106], [97], [108] shows that obtained scanning data

are very appropriated for neuronal networks application in scanned surface rectification, and after

this are significantly better that any surface reconstruction from stereo vision systems.

- The performance convenience in this case is given including the frequency of operation.

According to [109] our TVS possess the feature of variable scanning step, which permits on the

different stages of swarm mission adjust the fastness/accuracy to the current challenge; or even

provide the variable scanning velocity based on enhanced control algorithms of DC motor of laser

ray positioner, introduced in detail in [100] and [101].

2.3 Structure and working principles

According to current task robotic group move in low light conditions with a large number of

obstacles, the aforementioned vision systems may not always give the correct results during post

processing. Therefore, when working in such difficult conditions, authors TVS [96] can satisfy with

its accuracy and data representation. 3D TVS (Fig. 2.2a) is able to work in complete darkness,

and can obtain the real 3D coordinates of any point highlighted by laser ray on real, not imaginable,

surfaces. The theory is based on a dynamic triangulation method. The main components of the

26

TVS are the positioning laser (PL) and the scanning aperture (SA) (Fig. 2.2b).

System works in the following way: the laser emits its beam toward a fixed 45°mirror than

makes orthogonal redirection of the beam into a rotating 45°mirror driven by a stepper motor. For

the guaranteed positioning of the laser direction PL is driven by a stepper motor. SA receive the

reflected laser rays, this indicates that system had detected an obstacle. However, stepper motor

has one weak point: on the long distances of scanning dead-zones between two adjacent points of

scanning are provoked. Solution of the problem can be found in [110] and [111].

Figure 2.2 Technical Vision System

Dynamic triangulation ([102], [103]) consists of detection of laser instantly highlighted point

coordinates based on two detected angles Bij and Cij and fixed distance between projector and

receptor. Here ij means the number of horizontal and vertical scanning steps consequently. In such

triangle (Fig. 2.2b), if three parameters are known, it makes possible to calculate all others. Angle

Bij is calculated as simple ratio of two counters codes: number of clock pulses between two home

pulses and in interval "home pulse – spot pulse" (Fig. 2.2c) (Eq. 2.6).

Bi j =
2πNA

N2π
(2.6)

where NA is the number of reference pulses when laser rays are detected by the stop sensor and

27

N2π is the number of reference pulses when the 45°mirror completes a 360°turn detected by the

zero sensor. To calculate x, y and z coordinates the next equations are used (Eq. 2.7-2.10):

xi j = a

sin Bi j · sin Ci j · cos
j∑

j=1
β j

sin[180o − (Bi j + Ci j)]
(2.7)

yi j = a(1
2
−

sin Bi j · sin Ci j

sin[180o − (Bi j + Ci j)]
) at Bi j ≤ 90o (2.8)

yi j = −a(1
2
+

sin Bi j · sin Ci j

sin[180o − (Bi j + Ci j)]
) at Bi j ≥ 90o (2.9)

zi j = a

sin Bi j · sin Ci j · cos
j∑

j=1
β j

sin[180o − (Bi j + Ci j)]
(2.10)

2.3.1 Surface Recognition Improvement

The Levenberg-Marquardt algorithm is designed to optimize the parameters of nonlinear regression

models. It is assumed that the root-mean-square (RMS) error of themodel is used as the optimization

criterion on the training set. The algorithm consists of the given parameters initial values sequential

approximation to the desired local optimum.

Regression sampling is given – many pairs D = {(xn, yn)}Nn=1 of free variable x ∈ RM and

dependent variable y ∈ R. Regression model set – function f (w, xn) continuously differentiated in

the field W × X

It is required to find a value of the parameter vector w, which would deliver the local minimum

of the error function

28

ED =

N∑
n=1

(
yn − f (w, xn)

)2
. (2.11)

Before the algorithm starts, the initial parameter vectorw is set. At each iteration step, this vector

is replaced by a vector w + ∆w. To estimate the increment of ∆w is used the linear approximation

of the function

f (w + ∆w, x) − f (w, x) ≈ J∆w, (2.12)

where J is the Jacobian functions f (w, xn) at the point w. Matrix J has dimensions N × R and

can be visualized as

J =

∂ f (w,x1)
∂w1

. . .
∂ f (w,x1)
∂wR

...
. . .

...

∂ f (w,xN)
∂w1

. . .
∂ f (w,xN)
∂wR

(2.13)

here w = [w1, . . . ,wR]T is the parameter vector.

Increment ∆w at the point w, delivering a minimum of ED is zero. Therefore, to find the

subsequent increment value ∆w equating to zero the vector of partial derivatives ED by w. for this

Eq.2.11 presented in the form

ED = ‖y − f(w + ∆w)‖2, (2.14)

where y = [y1, . . . , yN]T and f(w + ∆w) = [f (w + ∆w, x1), . . . , f (w + ∆w, xN))]T .

Transforming this expression

29

‖y−f(w+∆w)‖2 =
(
y−f(w+∆w)

)T (
y−f(w+∆w)

)
= fT (w+∆w)f(w+∆w)−2yT f(w+∆w)+yTy

and differentiating, will be obtained

∂ED

∂w
= (JT J)∆w − JT (

y − f(w)
)
= 0. (2.15)

So, to find the value ∆w need to solve a system of linear equations

∆w = (JT J)−1JT (
y − f(w)) (2.16)

Since the condition number of the matrix JT J is the square of the condition number of the

matrix J, then the matrix JT J may be significantly degenerate. Therefore, Marquardt proposed to

introduce the regularization parameter λ ≥ 0,

∆w = (JT J + Iλ)−1JT (
y − f(w)

)
, (2.17)

where I is the identity matrix. This parameter is assigned at each iteration of the algorithm. If

the error value ED decreasing rapidly than small value λ reduces this algorithm to theGauss-Newton

algorithm.

The algorithm stops, in the event that the increment ∆w in the subsequent iteration is less than

the specified value, or if the parameters w deliver an error ED smaller than the specified value.

Value of the vector w at the last iteration is considered to be desired.

The disadvantage of the algorithm is a significant increase in the parameter λ with poor

approximation speed. In this case, the matrix inversion JT J + λ I becomes meaningless. This

disadvantage can be eliminated using the matrix diagonal JT J as a regularizing term:

30

∆w =
(
JT J + λdiag(JT J)

)−1JT (
y − f(w)

)
. (2.18)

2.3.2 Data reduction

According to the specifics of proposed TVS it returns the scanned surface as a point cloud (Fig. 2.3).

on short distances it gives high detailed object, while on a distance it loses its resolution depending

to the opening angle of each step of scanning. As the TVS uses stepper motors, on short distances

it gives high detailed objects (Fig. 2.3c contains 10663 point), while on higher distances it loses its

resolution depending to the opening angle of each step of scanning (Fig. 2.3b (3206 point) scan of

“Mayan pyramid”, on sides the point cloud density is less than a part of a cloud with stairs has).

In the memory of a robot each point obtained by TVS is represented with three variables – x,

y, z of Cartesian coordinate system. Each of them stored using double data type that is equals to

64bit per number, so to store one point of environment 192 bit of memory is used. Using simple

calculation it is possible to say that to store in memory “Object A” (Fig. 2.3a) 493,632 bits (60.3

kB) are used, “Object B” (Fig.. 2.3b) – 75.14kB and “Object C” (Fig. 2.3c) – 249.9kB.

However, a robot needs to move and to explore environment sizes of what can be limitless.

So the data that need to be processed can reach gigabytes and more for one autonomous vehicle,

but for the RG it needs to be multiplied on the number of individuals. That’s the main reason,

why it is necessary to reduce the amount of stored point in memory to a minimum that is required

for obstacle avoidance and dead reckoning (low-density scanning), and detailed object scanning

(high-density scanning) to use on-demand.

During the movement and mapping of environment the data that need to be processed can reach

31

gigabytes. For the navigation robots need a minimum amount of points to describe an object. That

is why it is necessary to implement the method of low density scanning for dead reckoning and to

use high density scanning on demand.

Figure 2.3 Examples of surfaces scanned by TVS

In previous work [112] were described the method of real-time data reduction during robots’

movement. According to the allocated accuracy zones (Fig. 2.4) were determined an opening angle

[109] equivalent to store points on detected obstacles.

As a starting point will be used and arc of one meter according to possible 160°FOV of TVS.

Using the research data and type of robots described in work [98] the cloud point density (ρ) of

image is 11 points per meter.

ρ =
λ

βp
, (2.19)

where λ – FOV angle, β – opening angle equivalent (14.5636°for initial calculations), p – length

of an arc (one meter for initial calculations). In general the length of an arc can be calculated as

follows:

32

Figure 2.4 Field of view fragmentation

p =
πrλ
180

, (2.20)

where r is radius of an arc (striking distance). To prevent the changes in selected resolution, the

opening angle will be calculated using Eq. 2.21:

β =
180
ρπr

, (2.21)

Average opening angle for each of the striking distance zone:

βi =

n∑
j=0

βi j

n
, (2.22)

where βi is an opening angle for each accuracy zone, βij is an opening angle for each striking

distance in zone i. Example of the calculation are represented on Fig. 2.5. Here we have a radius

33

of an one meter arc equal to 0.358m with resolution of 11 points per meter.

Figure 2.5 FOV with opening angle for low resolution for one meter arc length

Accuracy zones are separated in a next way: from 0 to 1 meter, from 1 to 3 meter and from 3 to 5

meter for high, average and low accuracy zones respectively. Taking into account such partitioning

of zones the results of the calculation are represented in table Fig. 2.6.

Figure 2.6 Opening angle comparison

Fig. 2.7(a) represents the general relation between opening angles and striking distances for the

reviewed density of points. Fig. 2.7(b) represents the same but also taking into account point cloud

34

density. Using the defined accuracy zones Fig. 2.8 demonstrates average values of such a ratio.

(a) Dependencies of opening angle and striking
distance

(b) Dependencies of opening angle, striking dis-
tance and point cloud density

Figure 2.7 Opening angle equivalents

According to the calculation the average angles based on the initial point cloud density (11

points/meter) are 10.059°for "High accuracy zone", 3.011°for "Average accuracy zone" and 1.34°for

"Low accuracy zone". The average angle for the "High accuracy zone" range will give a small

resolution equal to 5-6 points per meter. So the low edge value of an opening angle for "High

accuracy zone" was taken. The set of angles changed to 5.209°, 3.011°, 1.34°.

Identification of the obtained point on the obstacle surface, belonging to a specific accuracy

zone, is simplified to the solution of a point belonging to an ellipse in a Cartesian coordinate system.

Using the extended algebra of algorithms it can be written as the next expression:

RESOLUTION=<INPUT(striking_distance)*[zone_state]

(dcn v don v den)*RULES>

RULES={[critical](RESOLUTION_LOW) *

35

Figure 2.8 Average values of point cloud density

* [optimal](RESOLUTION_MEDIUM) *

* [effective](RESOLUTION_HIGH)}

36

Chapter Three

Data exchange for robotic group

Communication within the robotic group is one of the main tasks in swarm robotics. Its imple-

mentation helps to expand the possibilities of a swarm by improving tasks of flocking, foraging,

navigation, etc.

Communication works distinctively in most autonomous robotic group systems and depends on

the most part upon factors like the surroundings, robots’ dimensions, the financial possibilities of

the development, on project restrictions, or other external factors. The size of the robot has a direct

influence on the possible hardware that can be installed, so it increases a variety of communication

devices that can be used during development and improve communication within the group. As

an example of communication can be mentioned bluetooth, wireless LAN (Local Area Network),

communication using the environment (stigmergy).

Looking at different natural swarms it is possible to notice that some of them are not using

messages (voice) for communication. However, those swarms are still communicating with each

other. This type of communication is called stigmergy [113] where the swarm is using the

environment to interchange the data. For example, ants are placing pheromones to solve the task of

37

foraging and finding the shortest path. Ants start to follow the most odorous route and continue to

leave their pheromone, after some time the ants start to follow an optimal path. For robotic swarm

the stigmergy is not so efficient, more common ways for data exchange are bluetooth, wireless LAN

(WiFi), or infrared.

Reviewing the infrared communication has several advantages and disadvantages. To use

infrared communication robots must be in the direct vision of each other. But this technology can

be adopted for swarms and according to its specifics robots will have a natural filter of information

that comes outside of their group. On the other hand, infrared communication also has its benefits in

the micro-robotics application cause of there low usage of the energy resources. However, different

sources of light can interrupt data transference.

For mid-size robotic groups, wireless LAN communication is applied. Bluetooth type of

communication can be placed between infrared and LANaccording to its size and range capabilities.

Bluetooth gives the fundamental possibilities of inter-robot communication. Each participant must

have assigned a unique identifier. The content of messages can be simple and complex. Simple

messages can contain commands like ’start’, ’stop’, or some other directives, and complex messages

can contain additional descriptive information about the environment or requests for providing a

list of operations based on the robot’s capabilities. Messages can be distributed through the robotic

group or swarm using the protocol like a spanning tree.

Exists two types of communication, it can be with global or local interaction. During the

global communication received message contains local information of the sender. In most cases

this information is useless. In swarm or group robotics is used local communication. This type of

communication takes its origin in nature (herding is a good example, where the local interaction

38

helps to survive the predators’ attacks by signaling to their kin with movement or sounds).

In turn, local communication can be direct and indirect. Direct communications are real-time

data transferring within the group. In this case, a robot sends a message to the group and they

have to process it immediately. For direct communication can be used WiFi connection, bluetooth,

or more primitive types of communications like light and sound. Indirect communications use

different types of mediums that can be used for late access information storing (mail services). For

example, in swarm robotics, it is implemented during the task of SLAM by living an NFC (Near

Field Communication) card on detected landmark (implementation of pheromones used by ants).

There are a few characteristics of communication [114] that have a significant impact on how

it can be functioning and should be designed:

Communication Range has a direct impact on what distance should be between robots to achieve

complete data exchange. On the other hand, the large communication range can cause the commu-

nication to jam, cause each participant need to listen for all of the existing messages.

Communication Area in the perfect case covers all 360°, this case is possible if only one device

for data transferring exists on the top of a robot.

Length of Messages also has an influence on the communication process. In the case of small

messages, the network becomes overloaded with small pieces of data and creates queues to process,

on the other hand, the bigger message is the more chance to fail it has.

PropagationTime is the parameter that reflects howmuch timeneeded to distribute the data/message

within the whole robotic group/swarm.

39

Interference and other external influences is what each communication network is dealt with. For

example, external Wireless LAN, or like was mentioned before the sunlight for the infrared. Types

of interference based on the location and environment can vary.

Research considers two models of data transferring: information exchange with centralized

management (Fig. 3.1aa) and strategies of centralized hierarchical control (Fig. 3.1bb).

(a) Information exchange with central-
ized management

(b) Information exchange using strate-
gies of centralized hierarchical control

Figure 3.1Models of data transferring

In the next sections will be presented solutions for data transferring task in swarm robotics. So-

lutions are inspired by Spanning Tree Protocol (STP) [115] and Shortest Path Bridging (SPB)[116].

Spanning Tree Protocol is a data link layer protocol ([117], [118]). The main task of STP is to

eliminate loops in the topology of an arbitrary Ethernet network, in which there are one or more

network bridges connected by redundant connections. STP solves this problem by automatically

blocking connections that are currently redundant for the full connectivity of switches.

Shortest Path Bridging is the IEEE 802.1aq standard, it is a network technology that simplifies

the building and network configuration while taking advantage of multipath routing.

40

3.1 Spanning tree forming for swarm robotics

Consider a general case of the swarm that can be proposed as a method of network forming based

on creating a spanning tree. The algorithm consists of seven steps and includes the use of classical

approaches. Steps of dynamic network forming for robotic swarm are next:

• Build a fully-connected network graph;

• Use the Kruskal algorithm to build the minimum spanning tree;

• In the obtained tree, use the Floyd-Warshall algorithm to receive the list of all possible routes

in the network;

• Calculate the average route length for each node;

• Select the node with the lowest average length and configure it as a high-level node;

• Nodes with "one side" connection configured as low-level nodes;

• Other nodes configured as mid-level nodes.

Applying this method it is possible to obtain both of the network types automatically (depends

on the robot placement, a number of robots in a swarm, and signal of the network). In particular

cases (Fig. 3.2) in calculations is considered open space without obstacles, so the distances between

nodes were used. In more complicated scenarios, distances should be replaced with the wireless

network signal levels.

41

Figure 3.2 Calculated networks

This method is useful for a large swarm, but in the case of a small group can be used methods

that include more behavior control and solve several tasks simultaneously.

42

Figure 3.3 Network modeling results: 1 to 50 nodes with cross-validation

(a) Example # 1 (b) Example # 2 (c) Example # 3

Figure 3.4 Examples of network levels estimation based on geometrical center search

3.2 Leader based communication

Leadership is one of the principal features of swarm robotics is the local nature of the interaction of

robots with each other, as well as the robot with the environment. This interaction is called implicit

communication. The idea is that each robot group interacts directly only with its neighbors, in

a restricted area of visibility. In such a system, the robots make their own decisions on how to

proceed, based on some simple rules for local interaction.

In the "follow the leader" method is considered that the group has a priori defined leader, who

43

sets this movement. Terms of local interaction can be very different: from a purely formal to very

exotic. For example, rules of schooling movement based on the model of the springs and shock

absorbers. "Spring" component model defines the attraction of individuals to the leader (and not

to each other), and "Shock absorbers" – pushing away from the leader. On the other hand, there is

an option that allows determining the leader to solve the problem of coordinated motion.

One of the models that describe the locally interacting robots organization is static swarm [119].

It is characterized by the absence of a given control center and is some kind of a fixed network – a

set of agents. The basic properties of a static swarm are activity, local interactions, and functional

heterogeneity. That is why will be reviewed the method of role distribution based on the task of

selecting a leader. Under the term "Leader" we will understand the central node of data exchange

(robot for a short period of time will become server to store and marge data). For choosing a leader

robots will be using a voting process. Each robot can be described as a set of parameters:

R = (I, L, E, N) (3.1)

where I – identifier of robot, L – identifier of voted leader, E – evaluation of the leader L

(amount of voices that have to be given for a leader), N – list of connections available for robot (its

neighbors).

The voting process on the initial step goes the following way: each robot evaluates his neighbors

for the role of leader according to the set of previously defined its characteristics; each of these

characteristics have their own weight; using the membership function robot selects the neighbor

with the highest value.

For the vote value will be implemented a linguistic variable e = "evaluation of robot". Its value

44

is based on the scale of M = "very low", "low", "medium", "high", "very high" or it can have a digit

equivalent M=1, 2, 3, 4, 5. After voting process many alternatives for E will be generated, so it

will have next form:

E = {e1, e2, ..., en} (3.2)

where ei – alternative "candidate" at and n is amount of visible neighbors. For robot evaluation

are offered the following characteristics: 1) surroundings: c1 = "the number of neighbors evaluable

for candidate"; 2) territorial: c2 = "the distances to the neighbors or levels of signals"; 3) status: c3

= "the physical state of the robot". Each of these characteristics are estimated by a voting robot for

each of its neighbors:

Ci = {ci1, ci2, ..., cik} (3.3)

where cj – characteristic value of i-th "candidate" at j=1..k. Each of the characteristics has its

weight:

W = {w1,w2, ...,wk} (3.4)

where – the j-th characteristics weighting
∑
wi = 1, Evaluation of the i-th neighbors uses the

following formula:

ei =

k∑
j=1

w jci j (3.5)

To determine the value of linguistic variablewe use three types ofmembership functions (Eq. 3.6

– 3.8), where a general view is represented in Fig. 3.5.

45

Figure 3.5Membership functions

fvl(ei) =

1, x < vle

1
2 +

1
2 cos(ei−vle

vl−vle), vle ≤ x ≤ vl

0, x > vl

(3.6)

where vle is the threshold to which the membership function is equal to "1", vl is the threshold,

after which the membership function is equal to "0".

fvh(ei) =

1, ei > vhs

1
2 +

1
2 cos(ei−vhs

vhs−vhπ), vh ≤ ei ≤ vhs

0, ei < vh

(3.7)

where similar to Eq. 3.6 vhs is the threshold for "1" and vh is for "0".

fgb(ei) =
1

1 +
�� ei−c

a

��2b (3.8)

where c is the middle part of a membership function, a is the value at which fgb(c + a) = 1 and

fgb(c − a) = 1, b is the value of function smooth regulation.

46

3.3 Feedback implementation and method improvement

In the case where some of the information need to be transferred between all robots within the

group based on that certain of them (robots) have to be notified that transfer is complete. This task

is the dissemination of information feedback (PIF – propagation of information with feedback) is

formulated as follows: a subset is formed by robots of those which know message M (the same

for all robots) which should be spread, that is, all robots must take M. Certain processes must be

notified of the transfer is complete, a special event notification must be done, and it can only be

done when all processes have already received the M. Alert in PIF-algorithm can be viewed as a

return (OK) event.

Any wave algorithm can be used as PIF-algorithm. For example, let A be a wave algorithm.

To use A as a PIF-algorithm, we take the robots, initially knowing the M is an initiator of A.

Information M is added to each message A. This is possible because, by construction, starters of A

know M initially, and the followers do not send messages until they receive at least one message,

that is until they get M. When return (OK) events occur, each process knows the M, and return

event (OK) can be considered as the required notify event in PIF-algorithm.

Two models of data transferring were previously reviewed: information exchange with central-

ized management (Fig. 3.1a) and strategies of centralized hierarchical control (Fig. 3.1b). When

using the strategy of centralized management of a robotic group R, every robot ri (i = 1, 2,..., N) of

group transmits data about its state and information obtained about the environment in the central

control device (robot chosen by the estimation process).

The hierarchical strategy of a centralized management network between robots can be repre-

sented with layers. Layers can be separated into three types: the top layer is a single central control

47

device which merges data and initiates backward propagation; a middle layer is a group of control

devices for existing to send their data and data from lower levels (layers) to top layer; low layer can

communicate only with the elements of the middle layer, sending the data and receiving the data

after merging.

The leader-changing method can be simplified for the layers distribution inside the group. To

define network roles will be implementing linguistic variable p = "pattern of layer". It uses three

levels scale of M = "lower layer", "middle layer", "top layer". Correspondingly, many alternatives

of P can be represented in the following form:

To determine the value of the linguistic variable (Fig. 3.6) we use three types of membership

functions [120], where the extreme values ("Low-level" and "Top-level") will determine Z- shaped

(31) and the S-shaped (32) functions, the degree of belonging to the "Middle-level" value is based

on trapeze-like membership function (33) (general formulas are represented).

Figure 3.6 Functions for network layer determination

flow =

1, ei ≤ a

b−ei
b−a , a < x ≤ b

0, x > b

(3.9)

48

ftop =

0, ei ≤ c

ei−a
b−a , c < ei ≤ d

1, x > d

(3.10)

fmid =

0, ei ≤ a

ei−a
b−a , a < ei ≤ b

1, b < ei ≤ c

d−ei
d−c , c < ei ≤ d

0, ei > d

(3.11)

where ei is evaluation of the i-th robot, it takes the following form

ei =

k∑
j=1

w jci j (3.12)

In terms of fuzzy logic, it can be described using next IF – THEN rules type:

IF robot evaluation IS top level,

THEN network level EQUALS host

IF robot evaluation IS mid level,

THEN network level EQUALS level 1

IF robot evaluation IS low level,

THEN network level EQUALS level 2

where "NET HOST" – robot becomes a host for data transferring (top level), "NET LVL 1" and

"NET LVL 2" for determining the network level for communication (middle and low levels) and n

– fixing statement.

49

Schematic representation of PIF for the current case is in Fig. 3.7.

Figure 3.7Margin data about environment (sequence diagram)

Data transferring initiation period is at a state when one of the robots in group sends messages

to others to start data transferring, and occurs when: 1) robot needs additional data for further

navigation, or 2) robot has collected enough of a portion of information from TVS that seems to

50

be transferred to others in group. The voting process period is used for evaluation of each robot

in group. Compilation of data transferring channels happens at network forming period. The data

exchange period is used to interchange the accumulated data according to the topological structure

of the network. After this comes the data merge. The last two periods have floating time depending

on the amount of data accumulated by each robot.

3.4 Implementation results

When using the strategy of centralized management of a robots group R, every robot of group

transmits information about its condition, collects information about the environment in the central

control device, and receives commands from the central control unit (Fig. 3.8). In group of N

Robots, where every robot transfers on central control device message with size of Kout and receive

commands with size of Kin, the volume of transferred info will be:

I = N(Kin + Kout) (3.13)

Thus, the load on the communication channel is directly proportional to the number of robots

in the group.

Lest make the modeling of such system consider the case N = 5 (where n – the number of

robots) in two sates – where all robots have a good connection to a server (Fig. 3.8) and when robot

#1 and robot #2 have a bad connection that causes a package lost (Fig. 3.12). Modeling is based

on queue theory, where information about an obstacle that was found by robots is sent to the server

for further processing.

Modeling in MATLAB was made in the period of 500 seconds for all cases and gave us the

51

next results represented on the next figures: Fig. 3.9 shows us the total amount of sent requests for

processing and processed requests from all five devises, their difference explained as some of the

requests are duplicated; Fig. 3.10 represents a timeout in request processing (amount of time needed

for the next request to be processed by a server)(Timeout for robot #1, Timeout for robot #2 and

etc.); Fig. 3.11 represents modeling for the second case, where the bad signal to the server causes

the loss of requests (the difference between sent requests for processing and received requests).

Figure 3.8 Information exchange with centralized management

Figure 3.9 Total amount of sent and processed requests

Such data loss causes troubles in a movement of robots and increases the time of task imple-

52

mentation. That is why the network structure must be changed.

When using a hierarchical strategy of centralized management central control device is subject

to a top-level hierarchy of the robots, each of them is subject to several robots of lower-level

hierarchy (Fig. 3.12 represents a hierarchy for our case).

Such complex control schemes require very high performance of communications, because all

the robots, except the lowest level of the hierarchy, are interacting with robots of lower and upper

levels of the hierarchy. Displacement information through the transceivers of the robot may be

estimated as:

I = n(kin + kout) + Kin + Kout (3.14)

where n is the number of robots in the lower level of hierarchy; kin in is the amount of information

in the incoming messages from the lower level robot of hierarchy; kout – the amount of information

in outcoming messages to the lower level robot of hierarchy.

Figure 3.10 Timeout in request processing

53

Figure 3.11 Total amount of sent, received and processed requests with signal loss

Figure 3.12 Information exchange using strategies of centralized hierarchical control
(shown 2 levels)

54

Figure 3.13 Total amount of sent, received and processed requests with signal loss using
centralized hierarchical control

This robot swarm is processing and transferring the geometrical data of our original TVS

which are enough precise and naturally represent information about swarm surrounding in the

same Cartesian system. It significantly simplifies the decisions for navigation performance. The

decision of dynamic data exchange is supported by average timeout in request processing that at

the end of the modeling is suspended to the time of our TVS obstacle detection time (0.039 s in

both cases of network structure (Fig. 3.10, Fig. 3.14)).

55

Figure 3.14 Total amount of sent, received and processed requests with signal loss using
centralized hierarchical control

The leader changing system that we implemented improves the process of data transferring by

dynamically changing the network model from centralized management to centralized hierarchical

control and backward.

Results of our system implementation are shown in Fig. 3.15 by comparison the number of

processed requests before and after the leader changing system implementation.

Such approach helps to increase the movement speed of a group of robots and decrease the time

of their task accomplishment.

56

Figure 3.15 Comparison of the number of processed requests before and after leader
changing system implementation

Proposed dynamic data exchange network forming method extends the potential of our novel

TVS. It overlaps an ability of single robot navigation with a cloud-like common knowledge base

within the robotic group to improve the efficiency of dead reckoning.

The proposed methods allow the elimination of topological loops in the data network in a

group of robots. A fully connected graph of a real network with a high probability leads to

endless repetitions of the same messages in a group, while network bandwidth is almost completely

occupied by these useless replays. In these conditions formally the network can continue to operate

but in practice its performance becomes so low that may lead to a complete network failure.

Therefore, the proposed methods ensure the full propagation of information within the group and

help to improve the movement coordination of a robotic group by exchanging information about

the missing sectors.

57

Chapter Four

Path planning methods

The most common way to define the path planning (motion planning) problem as an agent needs

to move from its initial position to the goal by avoiding obstacles and achieving cost minimization.

The cost definition to find the optimal path varies based on the system’s criterias, in some systems,

it is time, in other distance, energy, etc. But as the most general approach is to minimize distance

(shortest path) between the start and the goal points. However, the definition of optimality changes

in some situations. As an example for robot matters the time used for calculation (amount of

iterations and there’s complexity). So when the path calculations take too much time it is harder

to achieve the task continuit. Such reason causes to choose the most suitable algorithm based on

desired optimality criterion. In some cases, it is better to use more complex criteria – combine the

criteria. So motion planning is one of the key tasks in robotics.

During the task of navigation can be allocated three main branches:

The Path Planning task when robots are provided with the goal point and/or points of interest and

themap of the surrounding area is converted to the quadtreemodel using the distance transformation

according to the desired resolution. After that calculates path from initial position through the points

58

of interest to the goal.

The Path Execution is the task where a robot starts to move from its initial position to the goal

using the path calculated during the path planning.

TheModel Update is triggered when a robot detects any kind of obstacle in its field of view (FOV)

and then updates the quadtree model of the surroundings.

In mathematics, there are well-developed algorithms for finding the way in an unknown or

partially known environment (Optimal and heuristic algorithms). For this purpose, discrete math-

ematics (graph theory) and linear programming are usually used. Tasks of the shortest path search

in the graph are known and studied (for example, Dijkstra’s, Floyd-Warshell’s, Prim’s, Kruskal’s,

algorithms, etc. [121] and [58]). Algorithms can be separated into two categories:

• Classic [122] [123] (Dijkstra’s, Floyd–Warshell’s, Prim’s, Kruskal’s, algorithms, etc.)

• Heuristic [124] [125] (A* algorithm, ant algorithm, genetic algorithm, etc.)

Exists many types of researches in the frame of path-planning. For example [119] where

authors represented an approach that uses motion primitive libraries. In [126], representing an

attempt to implement animal motion for robot behavior, or [2] suggested an algorithm of collision

free trajectory for robots.

This section will cover the main aspects of path planning used in the research according to the

specifics of the used technical vision system, environment and tasks.

59

4.1 Algorithm review

In mathematics are well-developed algorithms (Fig. 4.1) for finding the way in an unknown or

partially known environment (Optimal and heuristic algorithms). For this purpose, usually used

discrete mathematics (graph theory) and linear programming. Tasks of the shortest path search in

the graph have known and studied (for example, Dijkstra’s, Floyd-Warshell’s [127], Prim’s [128],

Kruskal’s [129] algorithms, etc.).

Figure 4.1 Dynamic Path Planning Algorithm

Dijkstra’s algorithm [130] is an algorithm for finding the shortest paths between nodes in a graph,

whichmay represent, for example, road networks. It was conceived by computer scientist EdsgerW.

Dijkstra in 1956 and published three years later. The algorithm exists in many variants. Dijkstra’s

original algorithm found the shortest path between two given nodes, but a more common variant

fixes a single node as the "source" node and finds the shortest paths from the source to all other

nodes in the graph, producing a shortest-path tree.

60

Floyd–Warshall [127] in computer science is an algorithm for finding the shortest paths in a

weighted graph with positive or negative edge weights (but with no negative cycles). A single

execution of the algorithm will find the lengths (summed weights) of the shortest paths between

all pairs of vertices. Although it does not return details of the paths themselves, it is possible to

reconstruct the paths with simple modifications to the algorithm. Versions of the algorithm can

also be used for finding the transitive closure of a relation R, or (in connection with the Schulze

voting system) widest paths between all pairs of vertices in a weighted graph.

A* or A-star or A* search [131] is one of the well-known and basic heuristic algorithm. It is a

combination of Dijkstra’s algorithm. The algorithm tries to minimize the function formulized as

f(n) = g(n) + h(n) heuristically considering the relationship between the nodes and the edges. g(n)

refers to the cost of starting point or node and h(n) implies a heuristic cost estimation related to the

remaining path. h(n) hereby constitute the heuristic base of the algorithm [132].

Genetic algorithm (GA) [133] is the other popular heuristic approach. This method imitates the

evolutionary process and attempts to acquire the best individuals (chromosome) which represent the

optimal path for this type of problem with regard to the defined objective function. The crossover

strategy is applied to the parents in order to create new individuals. In addition to this, the mutation

process which prevents the algorithm to converge on local minima is one of the crucial parts, so

that the variety of the solution space is always preserved. GA and similar heuristic methods are an

alternative way for the solution of the optimal path problem and they are often utilized.

Rapidly-Exploring Random Tree (RRT) is another probabilistic based algorithm which is im-

proved by Lavalle and Kuffner [134], [135]. It is aimed at the solution of the path planning

problems which have nonholonomic constraints. The algorithm generally gives effective results

61

in non-convex and high-dimensional spaces. The tree which implies the solution space is built

incrementally and two different functions which are the creation and the expansion of the tree are

used all over the scheme. The expansion of the tree is one-way which is from start to endpoint.

On the other hand, the idea of the expansion of the tree in a bidirectional way is improved the time

efficiency of the whole solution. This technique is called bidirectional RRT (bRRT or B-RRT)

and the tree is established in both starting and target points and then expanded into the unsearched

parts. The search process is terminated when the junction point of these two trees is found and this

path which is the output of the algorithm is an optimal route [136].

Probabilistic Roadmap (PRM) is one of the probabilistic-based and last path planning algorithm

used in this study. The optimal path is acquired by the distance calculation of the edges which are

the connections between randomly created nodes on the map. First of all, the nodes are generated

by sampling from the non-obstacle points on the map and then these nodes are linked to each other,

and lastly, the path cost is evaluated. The rapid random cluster strategy may provide faster results

than the other algorithms but not guarantee the shortest path [137].

The Bug Algorithm Family solves the navigation problem by storing only a minimal number of

waypoints, but without generating a full map of the environment. If no solution path exists, the

algorithm is able to recognize this situation and terminates reporting that the target is unreachable,

instead of endlessly wandering about.

The Bug model makes three simplifying assumptions about the robot [138]. First, the robot

is a point object. Second, the robot has a perfect localization ability. Third, the robot has perfect

sensors. These three assumptions are unrealistic for real robots, and therefore Bug algorithms are

usually not directly applied for practical navigation tasks but can be considered as a higher-level

62

supervisory component of a system that incorporates all three assumptions. Bug algorithms can be

seen as a first logical step towards solving a robotic 2D navigation task

The following algorithms from theBug family have been implemented and evaluated: Bug1[138],

Bug2[138], Alg1[139], Alg2[140], DistBug[141], Class1[142], Rev1[143], Rev2[143] and Tan-

gentBug[144].

4.2 Navigation algorithms analysis

The analysis based on the results in [99] are presented in graphics (in the case of “one to all” Fig. 4.2

and “all to all” Fig. 4.3 search) were represented the amount of time (in milliseconds) needed to

find the shortest path in case of 100 to 2500 nodes for each of the algorithms. The difference in the

performance of Dijkstra’s and Floyd-Warshell’s algorithms at “all to all” search is insignificant until

we have less than 500 nodes (Fig. 4.3), but the resulting routing matrix has different parameters

(length of the route is the same, but the ribs used for its passage are different). Bellman-Ford’s

algorithm is unacceptable for use in a task with lots of nodes because of its high calculation time

4.3 Navigation using technical vision system

The task of path-planning can be presented the next way:

• Robot is deployed in an unknown environment;

• Its current position marked as a starting point and target location as an endpoint;

• Robot calculates the heuristic rout and starts moving towards the target;

63

Figure 4.2 Results for “one to all search”

• In case of obstacle detection by the vision system, robot updates his navigation map and

recalculates the route;

• processes of obstacle detection and path update continues until the target is reached.

Additionally, the obtained path should be approximated to obtain a continuous and energy-

saving trajectory (Fig. 4.4).

As wasmentioned each iteration the heuristic path is calculated according to the current position

of the robot and its surroundings. During the calculation of the path, the robot will place additional

shape points (where the direction of movement is changed). To avoid the collision robot should

take into consideration the safe distance to an obstacle (Fig. 4.5).

In the case of our TVS, all the obstacles can be separated into two classes: positive obstacles

(above the level of local zero of robot’s coordinate system, Fig. 4.6a) and negative (below the local

zero of robot’s coordinate system, Fig. 4.6b)

64

Figure 4.3 Results for “all to all search”

4.4 Collision detection and obstacle avoidance

In the case of our TVS, all the obstacles can be separated into two classes: positive obstacles (above

the level of local zero of robot’s coordinate system, Fig. 4.6a)

Traditional Vision-Based Collision Detection Methods. the collision detection using on vision-

based systems is used in different types of robotic applications [145], [146]. As an example can

be mentioned [80], the authors proposed a monocular obstacle detection and avoidance method for

UAV. The mathematical model, used in the publication, estimates the relative distance from the

UAV’s camera to an obstacle in the FOV by finding the feature points. In [81] authors proposed a

method for robotic navigation in dynamic environments, the proposed solution is called escaping

algorithm it is using the force field method which belongs to the SLAM family.

65

Figure 4.4 Path planning

Bio-Inspired Collision Detection Methods. There are also several bio-inspired collision avoid-

ance and navigation methods, most of which are based on elementary motion detector (EMD), for

example, Zhang et al. [82], Badia et al. [83], and Franceschini et al. [84]. However, in many cases,

EMD-based methods could be difficult to apply due to its inherent character—the performance is

strictly restricted within certain visual speeds. LGMD-based methods, on the other hand, can cope

with most of the upcoming collisions, regardless of the visual speed. Blanchard et at. [85] was

the first to bring LGMD-based neuron networks into robots for real-time collision detection and

tested it with Khepera I robots. Badia et al. [86] proposed one form of LGMD based collision

detection model and tested it on a high-speed robot “Strider” with a wireless camera to capture and

66

Figure 4.5 Obstacle avoidance

transmit images to a PC for processing. Silva et al. [87] proposed another modified LGMD model

which combined two previous works from[88] and [89] for more robust collision detection, which

focused more on modeling instead of embedded system development. There has been an effort on

implementing the bio-inspired method in very large scale integration chips like field-programmable

gate array (FPGA), for example, Meng et al. [89] added additional cell to detect the movement

in-depth, Harrison [90] proposed an analog IC for visual collision detection based on EMD, and

Okuno and Yagi [91] implemented mixed analog-digital integrated circuits with FPGA. However,

these attempts are not suitable for micro and mini-robots, either because of the large size or the high

power consumption of the FPGA circuits. and negative (below the local zero of robot’s coordinate

67

Figure 4.6 Obstacles types

system, Fig. 4.6b)

According to the principles of TVS and previous research [112], it is expedient to use the

algorithmA* [147] as the tool of obstacle avoidance in this research. The terrain can be represented

as a matrix where each cell will have a linear size of the robot’s half diagonal. Cells are having

two possible states: available for the path through (walkable) or saturated by obstacle without the

possibility to the path through (non-walkable). Initially, each cell is walkable. After the detection

of the obstacle within the cell, it changes the state. All the cells around it also change the state

to “non-walkable” in order to create a safe zone and avoid collisions during the robot’s turns

(Fig. 4.7a). After execution of such operations set, the robot obtains a matrix of surrounding state,

where the results of TVS scanning (after z-coordinate omission) are replaced by a matrix of the

scanned sector (binary map) with a defined status of all inside cells (walkable/non-walkable, or

occupied/empty). Preliminary, the robot’s control unit decides the ability to pass the sector under

68

the attitudinal constraints: it is available if the obstacle height is lower than 0.1 of the wheel radius

or it is above the 1.2 of robot’s height (basing on the omitted z-coordinate). Such operation permits

to simplify the further path-planning, using a reduced 2D model.

A*, according to its classical form [123], performs the wave propagation toward the goal (points

of interest), searching for the first best match, which is the set of nearest “walkable cells”. This

set of cells supposed to be visited by the robot during its movement (Fig. 4.7b). The trajectory

in Fig. 4.7b represents the first match solution. However, this solution is not the best due to two

reasons: it contains redundant information (5 low-informative points, which are not strictly required

for trajectory planning) and non-smooth trajectory in this case, which increase the energetic load

on driving mechanism and robot’s wheels and which finally leads to undesired additional losses

of robot’s power source lifetime. To avoid these problems, we propose to perform additional post-

processing. For continuous (smoother) trajectories in the first step, we will remove all unnecessary

nodes from the trajectory, remaining only nodes where the direction of movement is changed

(Fig. 4.7c). In the second step of the post-processing, the path trajectory approximation should

be executed (Fig. 4.7d), in order to improve the robot’s movement smoothness. In this case, as

the approximation, we consider the replacement of the polygonal line with a smooth curve. The

selection of the appropriated method of individual trajectory approximation will be provided below.

It was done to obtain coherence between the decisions interrelation of the navigation system actions

and the ability to anticipate and provide feedback to events with sufficient speed.

The present research was reviewed and compared with several methods of approximation: point

to point [98], Beziers approximation and Dubins path.

In [98] was shown that ten points are enough for building a smooth trajectory. This amount

69

Figure 4.7World representation and dead reckoning with two-step post processing

of data requires a repetitive calculation of the movement vector at every point, which is time-

consuming. One of the simplified solutions is to use fewer points with Bezier curve as an approxi-

mation function ([148], [149]). Such approach is useful and found its application in various tasks of

path-planning for autonomous vehicles [150] and [151]. Mathematical parametric representation

of a Bezier curve has the form:

P(t) =
n∑

i=0
Bi Jn,i(t), 0 ≤ t ≤ 1 (4.1)

where t is a parameter, n is the degree of Bernstein’s polynomial basis, i is the summation index,

Jn,i(t) basis functions of the Bezier curve, also known as Bernstein basis polynomials of degree n,

and Bi represents the i-th vertex of the Bezier polygon.

The i-th Bezier or Bernstein function (approximation function) in Eq. 4.2 is given as:

Jn,i(t) =
©«

n

i

ª®®®¬ ti(1 − t)n−i, (4.2)

with ©«
n

i

ª®®®¬ =
n!

i!(n − i)! (4.3)

70

Bezier curve equation can be written in matrix form, as well as the equation for cubic spline

interpolation and parabolic:

P(t) = [T][N][G] = [F][G] (4.4)

[F] = [Jn,0, Jn,1, ..., Jn,n] (4.5)

[G]T = [B0, B1, ..., Bn] (4.6)

where T – vector of time, N – Bezier’s basis matrix, G – matrix of vertices. In general case for

Eq. 4.4:

[T] = [tn, tn−1, ..., t1] (4.7)

[N] =

©«
n

0

ª®®®¬
©«

n

n

ª®®®¬ (−1)n
©«

n

n

ª®®®¬
©«

n − n

n − n

ª®®®¬ (−1)0

©«
n

0

ª®®®¬
©«

n

n − 1

ª®®®¬ (−1)n−1 0

...
...

...
...

©«
n

0

ª®®®¬
©«

n

0

ª®®®¬ (−1)0 0

(4.8)

Let us compare an example represented on Fig. 4.8 Bezier curve based on three points. A and

B are initial and final points. Point C is a virtual temporal point to make a curve. Matrix [N] for

71

this case written in Eq. 4.9.

[N] =

1 −2 1

−2 2 0

1 0 0

(4.9)

The results of calculation are shown in Fig. 4.8 (Fig. 4.8a shows 3D view, Fig. 4.8b – 2D view).

It proves that in order to smooth the trajectory only three points are need.

Figure 4.8 Obstacle avoidance with Bezier curve

Lets return to example represented on figure Fig. 4.9. Using the calculation based on three

points (Fig. 4.9a) helps to avoid movement in situ on point B but not on point A. That is why

will be used the Bezier matrix for four-point (Eq. 4.10). Result of calculations is shown on figure

Fig. 4.9b. By adding temporal points C and D trajectory becomes smooth and it avoids the need

72

for movement in situ on all parts of the trajectory.

[N] =

−1 3 −3 1

3 −6 3 0

−3 3 0 0

1 0 0 0

(4.10)

Figure 4.9 Obstacle avoidance with Bezier curve

It this case only three points are needed to get the smoothen trajectory. As an example, let us

solve the same task using a Dubins path [152]. The following equations describe it:

x = V ∗ cos (θ)

y = V ∗ cos (θ)

θ = u

(4.11)

where (x, y) is the position of the robot, θ is the heading, a robot is moving using the constant

speed V. The optimal path type always is based on the robot’s ability to perform the next basic

73

actions: “right turn (R)”, “left turn (L)” or “driving straight (S)”. Every time the optimal path will

be one of the next six types: RSR, RSL, LSR, LSL, RLR, and LRL (Fig. 4.10).

Figure 4.10 Obstacle avoidance using Dubins path

Using the Dubins path (Fig. 4.11) the distance becomes longer and at the initial point, the robot

by default is in an inconvenient position to start a movement along the recommended trajectory

(additional inconvenient movement required). Making a detailed comparison of these two algo-

rithms, the result of the path made by Bezier approximation is 10.3% – 12.7% more effective than

the solution of the same situations using Dubins path.

Further, these methods were compared using the parameters of total path length and trajectory

smoothness, represented as an amount of trajectory bending energy [153].

The bending energy is a curvature function k, used to estimate the smoothness of the robot’s

navigation trajectory. Bending energy is calculated as the sum of the squares of the curvature at

each point of the line along its length. The bending energy of the trajectory of a robot is given by:

BE =
1
n

n∑
i=1

k2(xi, f (xi)) (4.12)

where: k(xi,yj) is the curvature at each point of the robot’s trajectory and n is the number of

points within the trajectory. Here the curvature of the trajectory at the n-th point is the inverse

74

value of the circle radius built to the point of arc where it moves along at the given instance of time.

The results are shown in Tab. 4.1. The 10 point curve was taken as the basis of comparison (all

represented as 100%). The summarized results are represented as an average value between the

total length and bending energy characteristic. In other words, each of them has the same weight

for calculation.

Figure 4.11 Obstacle avoidance with Dubins path and Bezier curves

Table 4.1 Motion planning comparing results

10 points curve Dubins path Bezier with 3 points Bezier with 4 points

Total length 100% 141% 113% 105%

Bending energy 100% 17% 75% 29%

Total 100% 79% 94% 67%

Comparing three motion planning methods (Dubins path, Bezier approximation using 3 and

4 points) we can get the next conclusions. The Dubins path received the highest length, but the

best bending energy saving. The Bezier approximation using 3 points polygon shows the worst

75

ability for optimized path planning. Ultimately, Bezier approximation using 4 point polygon gives

the most satisfactory average result. In other words, its application permits to get the minimally

extended trajectory, providing at the same time the maximum savings of the robot’s source and

ware of mechanisms.

4.5 Section conclusion

In general, these methods are solving the task of motion planning for the independent robot in a

group. It is obvious that data exchange between the n robots in a group is a good tool to obtain

additional information. It can serve for more efficient implementation of all mentioned above

methods. The main idea is to give each individual robot in a group more knowledge about the

sector as quickly as possible. Moreover, in some cases, a certain portion of information can be

unavailable for the i-th individual from its own position.

76

Chapter Five

Simulations and experiments

5.1 Modeling system structure and group behaviour

5.1.1 Basic behaviour scenario for robotic group

Swarm robotics is a new approach to the coordination of multi-robot systems. In contrast with

traditional multi-robot systems which use centralised or hierarchical control and communication

systems in order to coordinate robots’ behaviours, swarm robotics adopts a decentralised approach

in which the desired collective behaviours emerge from the local interactions between robots and

their environment. Such emergent or self-organised collective behaviours are inspired by, and in

some cases modelled on, the swarm intelligence observed in social insects.

The potential for swarm robotics is considerable. Any task in which physically distributed

objects need to be explored, surveyed, collected, harvested, rescued, or assembled into structures

is a potential real-world application for swarm robotics. The key advantage of the swarm robotics

approach is robustness, which manifests itself in a number of ways [154]. Firstly, robots within the

swarm are mainly represented as a group of similar robots, initially, they do not have a dedicated

77

task, however after robots are deployed the swarm is able to reorganize itself taking into account

the work they need to accomplish. Secondly, furthermore, the swarm approach has deep tolerance

to the failure of individual agents. Thirdly, the swarm has a decentralized control, it means that

robots have no common point of failure or similar type of vulnerability.

The acknowledgment of the capability of swarm robotics requires to solve of various extremely

hard issues [155]: algorithm design, implementation and test, analysis and modelling.

Algorithm design: developers have a problem to design the hardware part (physical model)

and behavior (logical/software part) of individual agents by providing the ability to establish

communication within the swarm, interaction with surroundings and ability to interact with each

other if necessary. Only then the desired collective behavior can be achieved.

Implementation and test: within the laboratory is required to build an experimental infrastructure.

Experiments during this stage are used with simulations.

Analysis and modeling : create a behavior model for robotic swarm considering parametrical

optimization and validation is a difficult task cause of is a stochastic, non-linear origin. Suchmodels

would definitely be a basic piece of developing a security contention for real-world applications.

This section will cover possible solutions for each of the problem and review their implementa-

tion according to the machine vision selection, methods of data transferring (communication) and

navigation.

Based on the tasks presented in previous sections can be establish conceptual diagram for

robotic group behaviour Fig. 5.1. The behaviour concept consists from next main steps:

78

Figure 5.1 Behaviour model of robotic group

Initialization – the first step of the behavior algorithm. Here each robot sets the default values

for the main parameters. Some of these parameters are predefined initially in the system by a

human operator and they are used as constants. These parameters are included the robotic group

size, terrain and its dimensions, speed limits, resolution, accuracy zones radiuses, and objective

locations (defined automatically or manually points of interest). Other parameters are defined by

robots individually (global zero and current position).

Sharing points of interest – on the previous step of initialization robots have the list of points of

interest. Here they applied the logic for sectoring the terrain (n sectors) between the agents/robots

(n robots) within the group. The corresponding points of interest of the i-th sector will be added to

the queue for visiting of the i-th robot.

79

The next three steps of the algorithm are going in parallel.

Path planning – includes the process of navigation, localization, and motion planning. Here robot

calculates the path using the A* between the current position and the next point of interest in a

queue.

Environment scanning – on this stage robot is using 3D technical vision system for obtaining

Cartesian coordinates and updating the existing map stored in the memory by creating projectiles

on the matrix representation of a map.

Communication – the stage where a group of robots is involved in the data exchange process

and data merge. Hero robots are improving their environmental knowledge using data of there

"teammates".

According to the algorithm (Fig. 5.1) can be created the combined solution for robotic group

and presented as pseudo code (Fig. 5.2).

80

Figure 5.2 Basic algorithm of robotic group (pseudo code)

Behaviour of robotic group for the modeling system can be described by using the next set of

variables:

• Robotic group: G = r1, . . . , rs;

• Group size: s

• Terrain: T;

• Terrain dimensions: d

• Speed and limits: Slow, Savg, Shigh;

• Resolution: Rlow, Ravg, Rhigh;

• Accuracy zones radiuses: Zlow, Zavg, Zhigh;

81

• Main objective locations: xm;

• Secondary objectives locations Xi = [xi1, . . . , xin];

• Pathfinding function: A(T, xij), where T = t1, . . . , ts;

• Distance to obstacle function: D(li, F), where F -– frame obtained from TVS;

• TVS to map coordinates function: C(x,y,z, b,a), where x,y,z – Cartesian coordinate from

TVS, b,a – dimensions of map;

It considers an initial robotic group G. Each robot is described as a set of Cartesian coordinates,

velocity vi and scanning accuracy (resolution) ai. For each robot, the algorithm initializes these

variables and maps (lines 1-4). Next, according to terrain dimensions, it splits the map into equal

sectors (line 5). Each of i robots for own sector creates the queue of secondary objectives Xi (for

optimal trajectory planning) and pushes to the end of the queue the main objective xm. While

the robot did not reach the main objective in the queue, it will repeat the lines 10-34. The robot

constantly provides the feedback for data exchange process initiation (lines 11 - 13), if such exchange

requested it participates in the process. After visual data frame obtaining from TVS (lines 14 - 15)

it reviews each point in the frame and sets as non-walkable all corresponding cells in the map (lines

16 - 19).

After obstacle detection (line 20) the algorithm uses a resolution and speed control based on the

accuracy zone range (lines 21-29). Then the robot initiates data exchange to update and share its

knowledge about the environment (line 30) with other group members, gets the path to the current

objective in the queue (line 31). If the current objective is reached, it pulls next from the queue

(lines 32-34)

82

5.1.2 Simulation frameworks

Before every complex mechanical system practical implementation it has to go throw two stages:

theoretical justification and realistic simulation. Create a digital model of the entire system sig-

nificantly affects the overall efficiency of the project. Process of simulation gives an opportunity

to reduce the mistakes during the development, improve the output of the system according to the

changes in environmental conditions and reduce costs of technical issues. Among other benefits of

simulation are:

• Reduce the cost of manufacturing robots;

• Resource management and source code diagnostics;

• Simulate different alternatives;

• Before the implementation of the robot its components can be verified;

• Modeling can be done in stages, for complex projects favor;

• To determine the viability of the system;

• Compatibility with a wide range of programming languages;

However, disadvantages of simulation also can be found. An application can simulate the

robotic behavior model only with predefined rules, it will not mimic factors that are not taken into

account in the development phase. Real world experience can provide more scenarios than the

computational model.

83

Nowadays simulation platforms covers a lot of tools and features that can provide close to real

life simulations. Most of the use different C/C++ like algorithmic languages, LabVIEW,MATLAB

and etc. In this section, several used simulation platforms are summarized.

Player/stage [156] is a project under which three robotics-related software platforms are currently

being developed. It consists of the Player network robotics server, the Stage-2D robot simulation

environment, and the Gazebo-3D robot simulation environment. The project was founded in 2000

by Brian Gerkey, Richard Vaughan and Nathan Koenig at the University of Southern California in

Los Angeles, and is widely used in research and training within robotics.

The UberSim [157] is a simulator designed for quick testing before uploading program to football

robot. UberSim uses the ODE physics engine. Software supports custom robots and sensors.

USARSim [158] is a simulation of urban search and rescue. It is based on Unreal Engine 2.0.

USARSim can be interfaced with Player and runs on Windows, Linux and MacOS.

Breve [159] is a 3D simulation environment for distributed artificial life systems. behavioral

models are defined using Python. Like UberSim, Breve uses ODE physics engine and OpenGL for

3D graphical representation.

V-REP [160] is a useful 3D simulator for educational process, allowsmodeling of complex systems,

individual sensors, mechanisms, and so on.

Webots [161] is a software product of Swiss company Cyberbotics. It provides supports of

different programming languages like C/C++, Java, Python, URBI and MATLAB. Moreover is

compatible with third-party software through TCP/IP.

84

Gazebo [162] can simulate complex systems and a variety of sensor components. It is helpful

in developing robots used in interaction, to lift or grab objects, to push and activities that require

recognition and localization in space.

ARGoS [163] is a modular, multi-engine simulator for heterogeneous swarm robotics. System is

able to use about 10,000 wheeled robots in real-time during the simulation.

TeamBots [164] is a multi-agent simulation program for robots that allows you to create multi-

agent control systems in dynamic environments with visualization. You can develop your control

system and implement it in a simulation program, and then test your control system in a real mobile

robot.

To prove the theoretical basis of presented questions was used developed software for the

simulation and robotic group collaboration. Presented framework has been developed in Unity

5 ([165],[62]), it is a multiplatform engine provided with different features and tools. Software

was developed using programming language C# in MonoDevelop integrated development environ-

ment (IDE) for Windows 10. Software (Fig. 5.3) has three operating modes "Without common

knowledge", "Pre-known territory", "With common knowledge". First two use only part of decision-

making system for path planning and obstacle avoidance. The third one implements a full stack of

decision-making process. In the end, the system returns data about environment and state of each

robot in every moment of time.

85

Figure 5.3 System structure

5.2 Robot entity

Robot within the system can be describedwith a set of variables (rotation speed, speed ofmovement,

current position and spatial orientation), goal position and decision making system (Fig. 5.4).

86

Figure 5.4 Robot entity

In current simulations were used four different random scenes presented in Fig. 5.6. Modeling

includes the group of three robots using Pioneer 3-AT and TVS (Fig. 5.5). This robotic platform

and its kinematic were reviewed previously in work [98]. The TVS used in the research had already

a practical implementation and solid results presented in articles, during modeling the dynamical

triangulation method will be simplified for the purpose of more efficient analysis of other problems.

Figure 5.5 Pioneer 3-AT mobile robotic platform

87

5.3 Influence of data exchange on path planning

To receive the results for each scene three scenarios were modeled. In the first scenario robots are

moving independently among each other (no knowledge sharing and data exchange) – “no common

knowledge”. In the second scenario (“with common knowledge”) three robots are fusing obtained

information and are using common knowledge about terrain for path planning (implemented data

exchange method). In the last scenario, the group is moving with the map of terrain – “with the

pre-known territory”. In each scenario, robots have to reach their personal goals and then get to a

common point.

To make the modeling were used four different scenes of cluttered environments (Fig. 5.6). First

two scenes (Fig. 5.6a and Fig. 5.6b) considers closed labyrinth-like environment with randomly

placed walls, the difference between two of these is that in second scene used the second level of

walls placed over the top of the first. Third scene (Fig. 5.6c) is closed to cluttered warehouse and

the last one (Fig. 5.6d) reviews office building after natural disaster.

88

(a) Scene #1 (b) Scene #2

(c) Scene #3 (d) Scene #4

Figure 5.6 Scenes used for modeling

For all of the scenarios in each scene, 100 simulations were executed. Each simulation in the

start point uses the same initial parameters (position, velocity, the accuracy of scanning, main and

secondary goals) of robots. The results of the modeling and accumulated data are represented in

Fig. 5.7

89

Figure 5.7 Length of trajectories

Reviewing the obtained results, it becomes visible on the graphs that exist trajectory lengths

90

deviation for each robot in all three scenarios (Tab. 5.3). For example Robot #1 in Fig. 5.7b for the

case of “no common knowledge” has a deviation of 4.32%. It means that for each of the modeling

iterations the robot had different routes to achieve its goals. In general, its average route maintains

the same. Still for some cases, shown as high peaks in Fig. 5.7b, the route becomes an outlier, in

regard to the average route length.

Another observation can bementioned where pre-known territory does not always give a shorter

trajectory length. This can be found in Fig. 5.7a (Robot #2), Fig. 5.7b (Robot #1, Robot #2, Robot

#3), Fig. 5.7d (Robot #3) for the case “with the pre-known territory”.

Both mentioned observations are caused by specialties of applied A* algorithm and, for the first

case, by unknown territory uncertainties. According to the principle of used TVS, as mentioned

earlier in Section 2, for the dead reckoning was decided to adopt the A* algorithm. Its heuristic

nature and structure provides a suitable solution for our needs in path planning. The matrix-based

orientation of the algorithm solves the task of discrete mapping used for robots dead reckoning

and gives next benefits: fast conversions of coordinates obtained from TVS to path planning map

reduces the need to post-process the point clouds from TVS to map in case of data exchange and

gives a faster calculation time, compared to Dijkstra algorithm [166] for example.

Implementation of the common knowledge base decreases trajectories deviation and tends them

to the optimal solution (not taking into account the individual anomalies that have occurred (peaks

on Fig. 5.7a and Fig. 5.7b, Robot#3 “with common knowledge”)). TVS cause all the deviations in

robots routes, mostly because of the order of obstacle detection.

The summary of the modeling is presented in Tab. 5.3 and Fig. 5.8. Comparing averaged

distances obtained during the modeling can be observed that the use of a common knowledge base

91

has advantages in all of the scenes. The result shows that RG with implemented data exchange

method has averaged group trajectory length shorter from 6.2% (Tab. 5.3 Scene #1) up to 10%

(Tab. 5.3 Scene #4), comparing to distances of individual autonomous robotic trajectories (when

using non-group movement). Under the group trajectory length, a sum of the individual trajectories

was considered. Scaling the results for individual robots in-group the improvement of trajectories

length can reach up to 21.3% (Tab. 5.3 Scene #3, Robot #1).

Table 5.3 Motion planning comparing results (the normalized units of framework used
for distances)

Scene #1 Scene #2 Scene #3 Scene #4

Solo Group Ratio Solo Group Ratio Solo Group Ratio Solo Group Ratio

Robot #1 155.99 155.17 0.0053 122.02 117.7 0.035 202.97 159.72 0.213 295 238.6 0.19

Robot #2 198.46 172.68 0.13 87.28 87.07 0.002 96.9 96.5 0.0042 123.2 121.7 0.012

Robot #3 147.76 143.16 0.0312 149.69 130.46 0.13 150.83 150.45 0.0025 174.6 171.6 0.018

Total 502.21 497.86 0.062 359.0 335.32 0.066 450.71 406.67 0.098 592.8 531.9 0.1

92

Scene1 Scene2 Scene3 Scene4

0

5

10

15

20

0.53

3.5

21.3

19

13

0.2 0.42 1.2
3.1

13

0.25
1.8

6.2 6.6

9.8 10

Tr
aj
ec
to
ry

le
ng

th
di
ffe

re
nc
e
(%

)

Robot1 Robot2 Robot3 Averaged

Figure 5.8 Comparing trajectory lengths for each of the scenes in percent

Now it’s obvious that the use of the data exchange method for merging individual knowledge

into common has a positive influence on robotic group movement and dead reckoning. Another

question occurs: What is the effectiveness of individual robots in the group while sectoring the

terrain in case of a dispersed initial placement (sectoring the terrain).

The most important goal of the present research is to offer the best solution to the stated

problem. Fig. 5.7 in general shows that our solution (green graph, applying the common knowledge

obtained by fusion of scanned data from n group members) always propose appropriated solution

in regard to path planning, which sometimes even can be better than “almost ideal case”, when

the configuration of environment is preliminary known (particular case b) in Fig. 5.7. This case

93

corresponds to the practical situation when the real scene is cluttered by a mix of continued and

small obstacles randomly placed within the considered frame.

In our opinion, such a variant is most probable in real life for the considered task. Moreover,

in the considered task the existence of preliminary known environment (inspection after disas-

ters) is almost impossible. So, we consider this circumstance as one of the significant obtained

contributions in our research.

Regarding the reasoning of such unexpected behavior of our algorithm, we can mention the

next. Search A* (in a pre-known territory) in computer science and mathematics, is the search

algorithm for the first best match on a graph that finds the least cost route from one vertex (initial) to

another (target, final). The particular Scene#2 in Fig. 5.7(b) demonstrates this principle: in the case

of “With pre-known trajectory” the algorithm does not consider all the possible set of trajectories,

but stops on the first arbitrary obtained an appropriated solution (by the nature of any heuristic

algorithms), i.e. robots are not using the closest path but the first best match existed on the map

in current environment. However, such a conclusion based only on simulation analysis cannot be

final, for its proof strongly requires real experimentation, because any complex phenomena in real

life can have many intercrossed reasons or sub-components.

5.4 Effectiveness of robotic group

5.4.1 Terrain sectoring

Laser scanning TVS, as an alternative to camera vision, can give the exact coordinates of any

selected point on the surface of the obstacle. However, they cannot process all the surfaces at the

94

same time and require a certain time to scan a 3D sector. The good solution to this problem is

to split the terrain into sectors, sharing the task among robots in the group. Such a distributed

scanning will give more explicit information about the position of obstacles inside this sector, and

possible dead-ends for robots, which maybe cannot view this sector part from its current position.

According to the TVS specifics, the RG will split terrain into sectors for their movement. To

back this up the example (Fig. 5.9) will be considered. While a single robot moves (Fig. 5.9a), it

detects an obstacle “A” and the goal point still is in a “blind spot”. Fig. 5.9b represents another

situation, similar to the group movement in [167]. Here the first robot still detects obstacle “A”,

the second robot moves closer to it. In the FOV of the second robot, part of obstacles “A” and “B”

appears, but not both of them completely. In this case, the robots have over-detailed knowledge

about one part of obstacle “A” and not so complete knowledge about the obstacle “B”. The goal is

still invisible in this particular case. In Fig. 5.9c the zone is separated by distancing of the robots

into two sectors (“sector A” for the first robot, “sector B” for the second). As can be observed in

the case of Fig. 5.9c, agents have enough detalization of an obstacle “A”, information about the

existence of obstacle “C”, and moreover, they have found the goal (object of interest). Using this

information, the trajectories of each robot are recalculated for reaching the goal. Let us review the

effectiveness of robots based on the “Scene #4” (Fig. 5.9d). Here under effectiveness will suppose

the amount of unique data obtained by a single robot compared to the common data fusion.

Figure 5.9 Terrain sectoring

95

5.4.2 Effectiveness calculation

Let us review effectiveness of robots based on the "Scene #4" (Fig. 5.6) . As effectiveness will be

understood the amount of unique data obtained by robot comparing to common data fusion. On

Fig. 5.10 are shown four different binary maps that in the end were known by the robotic group

(Three individual maps for each robot and fused map).

Overlapping one individual binary map on other is possible to say that some sectors were

detected only by one robot, other by two or three robots (Fig. 5.11).

Figure 5.10 Binary maps of environment

Figure 5.11 Overlapped individual binary maps

As was mentioned above each robot creates during its movement a binary map of the obtained

96

data about obstacles (i.e. individual maps Rm1, Rm2, . . . , Rmn of all n participants of the robotic

group, for the current particular case n = 3). The map of obstacles is:

M =
n∑

i=1
Rmi, where Mxy =

1, i f non − walkable

0, i f walkable

 (5.1)

For further calculations obtained matrixes will be considered as matrixes of integer values (for

this purpose were used operation ConvertToIneger where “true” considered as 1 and “false” as 0).

Applying the simple operation of matrix addition (Eq. 5.2) we will have the resulting matrix (Mr)

of fused data with overlapped density (the overlapping density, in this case, is ranked by discrete

values 1,2. . . n, and it can be defined as the higher the number, the more data repetitions occur in

this location). On Fig. 5.12a,b,c are presented the individually obtained maps by n (n = 3) robots

and Fig. 5.12d are fused data. The white areas are the locations where obstacles are not detected,

green where obstacles were detected once, blue by two robots, and red by three. So, Fig. 5.12

shows, that according to the overlapped results of the individually obtained maps by each robot can

be estimated the efficiency of environment sectoring and territorial group distribution.

Mr =
n∑

i=1
ConvertToIneger(Rmi), where Mrxy = 0...n (5.2)

By subtracting the overlapped data from the resulting matrix Mr (cells with values more than

1) will get the unique data obtained in the group. The sum of these values will give a total amount

of unique values. To calculate the group effectiveness (Ge) of terrain sectoring will be used in the

next equation:

Ge =
Tou
To

(5.3)

97

where Tou is a total amount of unique detected obstacle (Mrxy = 1) and To is a value of total

detected obstacles on a scene.

Tou =
w∑

x=0

h∑
y=0

Mrxy, where Mrxy = 1 (5.4)

To =
w∑

x=0

h∑
y=0

ConvertToInteger(Mxy) (5.5)

where w and h are width and height of the matrix Mr correspondingly.

Besides the overlapped data, it can be allocated another characteristic – the ratio of individual

data obtained by the robot to total data. Fig. 5.12 shows the results of the analysis of the obstacles

For these scenes, the average group efficiency equals 75.98%, the data obtained by two robots

is 15.53% and by 3 is 8.48% (Fig. 13a). Comparing the results of obtained unique data from each

robot (Fig. 13b) will receive the following values of 36.29%, 13.82%, and 25.86% for first, second,

and the third robot respectively.

The approach of sectoring the terrain improves the individual FOV’s of each robot to the

extended joint FOV of RG. It gives a sufficiently detailed point cloud of surrounding, combining

data from each individual TVS. Such extended FOV helps to avoid unnecessary scanning and

decreases the number of calculations required to pass through the already scanned territory for all

robots as a whole.

98

Figure 5.12 Individual maps overlapping

99

(a) Overlapped density values for each scene

(b) Unique data from each robot in group

Figure 5.13 Unique and general data comparison for each robot in group

5.4.3 Scenes description for modeling and analysis

For the analysis of group effectiveness was decided to make another modeling with different

approach 5.17. Here environment has to be scanned with the group of robots (1 to 5 units in group).

Each robot has a list of secondary objects needed to be visited in a specific order and return to

initial position. The list of the scenes are presented in Tab. 5.4 and the visualized examples are

100

presented on Fig. 5.14.

Table 5.4 Experimental scenes description

Scenario Scene Obstacles on scene Robots in group Size

Scenario #1 Scene #1 39 1 to 5 100 x 100

Scenario #1 Scene #2 39 1 to 5 100 x 100

Scenario #1 Scene #3 17 1 to 5 100 x 100

Scenario #2 Scene #1 36 1 to 5 100 x 200

Scenario #2 Scene #2 92 1 to 5 100 x 200

Scenario #2 Scene #3 39 1 to 5 100 x 200

Scenario #3 Scene #1 63 1 to 5 200 x 200

Scenario #3 Scene #2 159 1 to 5 200 x 200

Scenario #3 Scene #3 159 1 to 5 200 x 200

Figure 5.14 Examples of used scenes

101

5.4.4 Secondary objectives placement for surface mapping

For the task of terrain mapping it is necessary to locate additional points to visit. Solution can

be adopted from surface mapping using UAV [168] or other autonomous surface vehicles [169].

These solutions are based on Dubins car principles ([152], [170]).

According to theDubins principles, for the case of terrainmappingwith single robot (Fig. 5.15a),

territory is covered with pre-calculated trajectory. In place where the trajectory is changing its state

(straight to round and round to straight) secondary points are placed (light grey dots on Fig. 5.15).

Terrain mapping using a group of robots can be separated in two types: vertical movement

(Fig. 5.15b) and horizontal movements (Fig. 5.15c). In both types territory is sliced into sectors

(amount of sectors depends on amount of robots). Advantages of sectoring the terrain are described

in [112].

Figure 5.15 Secondary objectives placement

102

Figure 5.16 Secondary objectives placement on testing environment

5.4.5 Unique data as an index of effectiveness

After the modelling of each scene (Fig. 5.17) and closer look on the sectoring technique used in

it was decided to use the unique data as the main characteristic of group effectiveness. Obtained

results are presented in Fig. 5.18 - Fig. 5.21

(a) Example of obtained
tracks for two robots

(b) Example of obtained
tracks for three robots

(c) Example of obtained
tracks for five robots

Figure 5.17 Example of obtained tracks and scanning sectors

103

Robot#1 Robot#2

40

45

50

55

60

50 50

45.37

54.63

40.74

59.26

Eff
ec
tiv

en
es
s(
%
)

Scene#1 Scene#2 Scene#3

Figure 5.18 Effectiveness of two robots group

Robot#1 Robot#2 Robot#3

10

20

30

40

50

60

45.42

9.89

44.69

38.66

9.79

51.55

33.79

12.23

53.98

Eff
ec
tiv

en
es
s(
%
)

Scene#1 Scene#2 Scene#3

Figure 5.19 Effectiveness of three robots group

104

Robot#1 Robot#2 Robot#3 Robot#4

0

10

20

30

40

50

33.03

17.69 18.05

31.2331.98

3.84

14.5

49.68

32.87

10.65

30.09
26.39

Eff
ec
tiv

en
es
s(
%
)

Scene#1 Scene#2 Scene#3

Figure 5.20 Effectiveness of four robots group

105

Robot#1 Robot#2 Robot#3 Robot#4 Robot#5

−5

0

5

10

15

20

25

30

35

40

45

50

41.63

6.51
3.02

9.3

39.53

44.47

3.34 2.31

12.85

37.02
39.35

0
3.5

28.57 28.57

Eff
ec
tiv

en
es
s(
%
)

Scene#1 Scene#2 Scene#3

Figure 5.21 Effectiveness of five robots group

Fig. 5.22 shows the result of overlapped data as the averaged values of detected data. I shows

that robots placed on the sector sides are more effective that robots that are moving in the middle

of the map. It means that side robots are providing more data unique values (data in general) that

other agents within the group.

106

Robot#1 Robot#2 Robot#3 Robot#4 Robot#5

20

40
39.78

7.01 6.79

18.89

43.88

Eff
ec
tiv

en
es
s(
%
)

Figure 5.22 Avaraged overlapped values of group effectivenes

Additional analysis of detected data is shown on Fig. 5.23 - Fig. 5.31

By 1 Robot By 2 Robots By 3 Robots By 4 Robots By 5 Robots

0

200

400

600

800 795

0 0 0 0

726

63
0 0 0

540

199

57
0 0

554

192

3 38 0

430

286

45 5 33Eff
ec
tiv

en
es
s(
%
)

Single robot 2 Robots 3 Robots 4 Robots 5 Robots

Figure 5.23 Effectiveness of five robots group (Scenario #1, Scene #1)

107

By 1 Robot By 2 Robots By 3 Robots By 4 Robots By 5 Robots

0

200

400

600

800

1,000
876

0 0 0 0

723

184

0 0 0

613

179
115

0 0

469

263

99
42 0

389
286

108 71 35

Eff
ec
tiv

en
es
s(
%
)

Single robot 2 Robots 3 Robots 4 Robots 5 Robots

Figure 5.24 Effectiveness of five robots group (Scenario #1, Scene #2)

By 1 Robot By 2 Robots By 3 Robots By 4 Robots By 5 Robots

0

200

400

600

800 721

0 0 0 0

667

143

0 0 0

515

175
75

0 0

432

234

20 38 0

371

242

72
13 31Eff

ec
tiv

en
es
s(
%
)

Single robot 2 Robots 3 Robots 4 Robots 5 Robots

Figure 5.25 Effectiveness of five robots group (Scenario #1, Scene #3)

108

By 1 Robot By 2 Robots By 3 Robots By 4 Robots By 5 Robots

0

500

1,000

1,500 1,374

0 0 0 0

1,201

42 0 0 0

1,254

121 46 0 0

1,028

179
5 37 0

1,126

183
17 10 30

Eff
ec
tiv

en
es
s(
%
)

Single robot 2 Robots 3 Robots 4 Robots 5 Robots

Figure 5.26 Effectiveness of five robots group (Scenario #2, Scene #1)

By 1 Robot By 2 Robots By 3 Robots By 4 Robots By 5 Robots

0

500

1,000

1,500
1,500

0 0 0 0

1,343

41 0 0 0

1,338

288

34 0 0

1,336

168
5 41 0

1,336

245
7 9 37

Eff
ec
tiv

en
es
s(
%
)

Single robot 2 Robots 3 Robots 4 Robots 5 Robots

Figure 5.27 Effectiveness of five robots group (Scenario #2, Scene #2)

109

By 1 Robot By 2 Robots By 3 Robots By 4 Robots By 5 Robots

0

500

1,000

1,500 1,452

0 0 0 0

1,238

41 0 0 0

1,264

288

46 0 0

1,079

168
72 51 0

1,059

245
52 2 47

Eff
ec
tiv

en
es
s(
%
)

Single robot 2 Robots 3 Robots 4 Robots 5 Robots

Figure 5.28 Effectiveness of five robots group (Scenario #2, Scene #3)

By 1 Robot By 2 Robots By 3 Robots By 4 Robots By 5 Robots

0

1,000

2,000

2,391

0 0 0 0

1,789

33 0 0 0

2,066

125 33 0 0

1,562

77 4 30 0

1,888

166
1 2 32

Eff
ec
tiv

en
es
s(
%
)

Single robot 2 Robots 3 Robots 4 Robots 5 Robots

Figure 5.29 Effectiveness of five robots group (Scenario #3, Scene #1)

110

By 1 Robot By 2 Robots By 3 Robots By 4 Robots By 5 Robots

0

1,000

2,000

3,000 2,905

0 0 0 0

2,658

65 0 0 0

2,472

452
95 0 0

2,406

319
4 38 0

2,540

409
10 8 35

Eff
ec
tiv

en
es
s(
%
)

Single robot 2 Robots 3 Robots 4 Robots 5 Robots

Figure 5.30 Effectiveness of five robots group (Scenario #3, Scene #2)

By 1 Robot By 2 Robots By 3 Robots By 4 Robots By 5 Robots

0

1,000

2,000

2,481

0 0 0 0

2,040

225
0 0 0

2,145

372
33 0 0

1,738

444

32 3 0

2,015

511

3 0 29

Eff
ec
tiv

en
es
s(
%
)

Single robot 2 Robots 3 Robots 4 Robots 5 Robots

Figure 5.31 Effectiveness of five robots group (Scenario #3, Scene #3)

Comparing the obtained amount of data between the robotic groups in all scenes can be made

the next conclusion that group of thee robots in all cases gives mode data that all other groups

(Fig. 5.32).

111

Figure 5.32 Comparing the detected data

5.4.6 Scene completion time

According to the specifics of the developed application was decided to use as time equivalence

amount of iterations needed to finish the scene (Fig. 5.33). Next charts (Fig. 5.36 - Fig. 5.33) are

representing the obtained data. Each chart represent each scenario separately.

Figure 5.33 Tiempo de finalización de la escena

112

RG1 RG2 RG3 RG4 RG5

1,000

2,000

3,000

4,000

Ti
m
e
[it
er
at
io
ns
]

Scene#1
Scene#2
Scene#3

Figure 5.34 Scenario#1 completion time

RG1 RG2 RG3 RG4 RG5

1,000

2,000

3,000

4,000

5,000

6,000

Ti
m
e
[it
er
at
io
ns
]

Scene#4
Scene#5
Scene#6

Figure 5.35 Scenario#2 completion time

RG1 RG2 RG3 RG4 RG5

1,000

2,000

3,000

4,000

5,000

Ti
m
e
[it
er
at
io
ns
]

Scene#7
Scene#8
Scene#9

Figure 5.36 Scenario#3 completion time

113

To getmore comparative view of averaged data (Fig. 5.37) it should be represented as normalized

values (Fig. 5.38).

RG1 RG2 RG3 RG4 RG5

1,000

2,000

3,000

4,000

5,000

Ti
m
e
[it
er
at
io
ns
]

Scenario#1
Scenario#2
Scenario#3

Figure 5.37 Average completion time

The results are showing that group of five robots gives the best time in performance, however

the difference between group of three robots and five are just in 20% of time to complete the scene,

but it is already two robots more that increase the complexity of calculations and system structure.

That is why once more can be told that group of three robots are better to use.

RG1 RG2 RG3 RG4 RG5

0

0.2

0.4

0.6

0.8

1

Ti
m
e
[it
er
at
io
ns
]

Scenario#1
Scenario#2
Scenario#3

Figure 5.38 Normalized completion time

114

5.4.7 Informational entropy reduction analysis

Shannon proposed in [171] the notion of the average informativeness measure of the test (the

unpredictability of its outcomes), which takes into account the probability of individual outcomes.

Entropy (Eq. 5.6) is directly related to the “unexpectedness” of an event. From this follows its

information content – the more predictable an event, the less informative it is. This means that its

entropy will be lower.

H = −
∑

i

Pi ∗ log2Pi (5.6)

where Pi is the probability of the i-th outcome.

For our case is reviewed the event of obstacle detection. In the case of current task robots

are moving in a partially unknown environment (only known boundaries of it). That is why the

appearance of each new obstacle have equal value if entropy. Obstacles that were detected are not

taken into account.

Fig. 5.39 are representing the obtained knowledge (in presents) during the time (iterations).

Each figure represents the specific scene used during modeling for different robotic group sizes.

The presented graphics have the reversed logarithmic type of nature (were represented obtaining

the knowledge and not directly decrease of entropy).

Reviewing the results can be noticed several patterns. On Fig. 5.39 the received knowledge has

a step-like form. Is very noticeable in case of three robots from 500 to 1000 iterations, or on general

the graphics form of single robot case. More over for the group of four and five robots the knowledge

obtaining during time is almost the same as the difference in time of scene accomplishment (as

were mentioned before).

115

Figure 5.39 Entropy reduction speed

On the chart can be seen that the group of four and five robots are having almost the same

entropy reduction speed (1%-3% difference). The group of thee robots are given the 7%-20%

difference comparing to group of five robots (comparable with time completion scene).

5.5 Section conclusion

The presented section proposed the methodology to analyze the information entropy and evaluate

the effectiveness of the robotic group. According to presented results it is possible to make the next

conclusions: the location of the objects on the map has a minimal impact on the mapping; with the

116

same area, the scanning speed depends on the number of robots; The most complete scanning of

the space gives a group of three robots (current case); Based on the current placement of robots, the

extreme robots provide more information than the robots closer to the center (the average efficiency

of the extreme robots is higher than 30%); the acquisition of data has a stepped form; the amount

of data received directly affects the speed of obtaining a new knowledge (more robots know about

the environment, the less new information it will be possible to obtain over time).

117

Chapter Six

Conclusions

6.1 Conclusions

The dissertation thesis was devoted to the methods of robotic group automation. The research was

based on the three main aspects of optimization: the vision system that allows to work in different

conditions and have a good accuracy; data transferring and communication within the group that

allows to have an environment 3D map up to date and avoid additional movement planning; and

the path planning approach that will allow to build minimized continuous trajectories and decrease

curvatures banding energy while fitting the first two aspects.

All of the mentioned aspects were reviewed during the Chapters One to Chapter Four and

analyzed in full within the implementation in Chapter Five. Based on the research the next

conclusions can be done:

Initially were reviewed the origins and basics of swarm robotics. In thesis is overviewed the

main types of behavior models and their application. According to them and existing projects were

designed the behavior model of the robotic group for future research.

118

Analyzing all pros and cons of different types of vision systems were decided to use the 3D

laser technical vision system. Based on it were made an improvement of 3D point cloud density

stabilization stored in a memory of robot. With this aim into the system of robots, logic was

added such variable as an opening angle. It keeps the density (resolution) of scanned surfaces

in the necessary minimum resolution and applies to it the path planning, using the detailed scan

on demand. Based on the obtained values were applied fuzzy logic rules defining three accuracy

zones. According to Chapter Two, the initial point cloud density (11 points/meter) are 10.059°for

"High accuracy zone", 3.011°for "Average accuracy zone" and 1.34°for "Low accuracy zone". The

average angle for the "High accuracy zone" range will give a small resolution equal to 5-6 points

per meter that is away from the initial goal, also robots start to miss the close positioned obstacles.

So the low edge value of an opening angle for "High accuracy zone" was taken. The set of angles

changed to 5.209°, 3.011°, 1.34°.

It is obvious that data exchange between the n robots in a group permits to get more additional

information in a fuzzed dataset that has each individual robot itself. It can provide more complete

monitoring results. The main idea is to give each individual robot in a group more knowledge

about the sector as quickly as possible. Data exchange serves for more efficient implementation

as a supporting tool of described methods in the thesis. For the purpose of communication

were developed two approaches: based on spanning tree protocol principles and leader base

communication with the propagation of information with feedback. The first method is embedding

the Kruskal algorithm to calculate a spanning tree and Flowyd-Warshal to find the main (center)

node the fuzzy logic rules to select a center (leader). It is established in this thesis that the introduced

method has a proportional function with respect to the number of robots in a swarm. For small

119

groups, the second method is used.

The leader changing system that was implemented improves the process of data transferring by

dynamically changing the network model from centralized management to centralized hierarchical

control and backward. The proposed dynamic data exchange network forming method extends the

potential of our novel TVS. It improves the ability of a single robot efficiency of dead reckoning

with a cloud-like common knowledge base within the robotic group. The proposed methods allow

the elimination of topological loops in the data network in a group of robots. A fully connected

graph of a real network with a high probability leads to endless repetitions of the same messages in

a group, while network bandwidth is almost completely occupied by these useless replays. In these

conditions formally the network can continue to operate but in practice, its performance becomes

so low that may lead to a complete network failure. Therefore, the proposed methods ensure the

full propagation of information within the group and help to improve the movement coordination

of a robotic group by exchanging information about the missing sectors. Analysis has shown that

the implementation of leader based method reduced the data loss and the average timeout in request

processing were less than the time of 3D TVS obstacle detection time (0.039s in both cases of

network structure).

For the path, planning was adopted to our task conditions the use of the A* algorithm with two

steps of post-processing. The algorithm suits the workflow of TVS and its output data to create the

environmental matrix-based map. For the post-processing were compared three motion planning

methods: Dubins path, Bezier approximation using 3 and 4 points. For the evaluation of those

algorithms, we used two parameters: total length and bending energy. The Dubins path received

the highest length, but the best bending energy saving. The Bezier approximation using 3 points

120

polygon shows the worst ability for optimized path planning. Ultimately, Bezier approximation

using 4 point polygon gives the most satisfactory average result. Making a detailed comparison

of the Bezier approximation and Dubins path, the result of the path made by the first algorithm

is 10.3% – 12.7% more effective (bending energy efficient) than the solution provided by Dubins

path. In the case of 3 point Bezier approximation, it looses in all aspects (7% more of a path

length and 46% less energy efficient) comparing to 4 point Bezier approximation. In other words,

its application permits to get the minimized trajectory, providing at the same time the maximum

savings of the robot’s source and ware of mechanisms. In general, these methods are solving the

task of motion planning for the independent robot in a group.

The original simulation software was developed to verify the benefits of methods. It implements

the behavior model while combining all of the vision, communication, and path planning methods

together. The thesis offers an original solution that improves robotic group teamwork To achieve

the result were used two types of modeling: first to review the influence of data transferring on

dead reckoning (a group of 1 to 3 robots on 4 scenes and 100 simulations for each of 3 scenarios

with/without common knowledge base and predefined environment); the second is to review the

effectiveness of the group (with the groups of 1 to 5 robots, 3 scenarios and 9 scenes in total).

Comparing averaged distances obtained during the modeling can be observed that the use of

a common knowledge base has advantages in all of the scenes. The result shows that the robotic

group with implemented data exchange method has averaged group trajectory length shorter from

6.2% up to 10%, comparing to distances of individual autonomous robotic trajectories (when

using non-group movement). Scaling the results for individual robots in-group the improvement

of trajectories length can reach up to 21.3%. It gives the possibility to free a significant part of

121

memory on an individual robot for a complementary task solution in real-time and use the data

only needed for navigation task. Simulations have shown that the use of mentioned improvements

applied to the behavior of the robotic group allows stable functioning of the group at lower energy

costs of motion (bending energy) and decreases trajectories length.

The proposed theoretical method is the subject to efficient application in many engineering

tasks, such as surroundings mapping after a natural or human-caused disaster, indoor navigation,

surface recognition, etc. while the reconstructed 3D image in its turn is possible to use for structural

health monitoring.

6.2 Future works

The next tasks are next steps in environmental analysis: clusterization of 3D scans and structural

health monitoring. The examples of the solutions are presented below.

Density-based spatial clustering of applications with noise (DBSCAN)[172] algorithm was

proposed byMartin Esther, Hans-Peter Kriegel, and colleagues in 1996 as a solution to the problem

of splitting (initially spatial) data into clusters of arbitrary shape. Most algorithms that produce a

flat partition create clusters that are close to spherical in shape, since they minimize the distance

of the documents to the center of the cluster. DBSCAN authors experimentally showed that their

algorithm is able to recognize clusters of various shapes.

The idea of the algorithm is that inside each cluster there is a typical density of points, which

is noticeably higher than the density outside the cluster, as well as the density in areas with noise

below the density of any of the clusters. For each point of the cluster its neighborhood of a given

radius must contain at least some number of points, this number of points is specified by a threshold

122

value (Fig. 6.1).

The algorithm can be presented as next:

• Given the dataset

• Label all points as core or non core

• Until all core points are visited:

– Add one of non visited core point P to a new cluster

– Until all points in cluster are visited:

∗ For each non visited core point P within the cluster:

· Add all core points within boundary of P to the cluster

· Mark P as visited

• Until all non-core points are visited:

– If a non core point P has a core point within its boundary, add it to the cluster corre-

sponding to that core point

– Else ignore

Figure 6.1 DBSCAN clustering illustration

123

Example of algorithm implementation presented in Fig. 6.2. Here can be seen a scanned

environment using the group of robots and TVS (Fig. 6.2a). After implementation of DBSCAN

can be seen clustered objects (Fig. 6.2b).

(a) Original point cloud of scene (b) Clustered scene

Figure 6.2 Example of DBSCAN implementation

According to the clustered data set objects can be extracted for further analysis (Fig. 6.3).

Obtained data can be used in many applications like object classification and recognition, surface

reconstruction and etc.

Figure 6.3 Extracted objects

124

One of the main sub applications is to use data for structural health monitoring. The scanned

surface (Fig. 6.4a) can be analyzed and reconstructed to detect crack (Fig. 6.4b) or other problems

that accrue.

(a) Scan of cracked surface (b) Detected crack

Figure 6.4 Implementation of approach for structural health monitoring

125

Publications

Articles with impact factor

• Ivanov, M., Sergiyenko, O., Tyrsa, V., Lindner, L., Rodriguez-Quinonez, J. C., Flores-

Fuentes, W., Hipolito, J. N. (2019). Software Advances using n-agents Wireless Commu-

nication Integration for Optimization of Surrounding Recognition and Robotic Group Dead

Reckoning. Programming and Computer Software, 45(8), 557-569.

• Ivanov, M., Sergyienko, O., Tyrsa, V., Lindner, L., Flores-Fuentes, W., Rodriguez-Quinonez,

J. C., Mercorelli, P. (2020). Influence of data clouds fusion from 3D real-time vision system

on robotic group dead reckoning in unknown terrain. IEEE/CAA Journal of Automatica

Sinica, 7(2), 368-385.

• O.Yu. Sergiyenko,M.V. Ivanov, V.V. Tyrsa, V.M.Kartashov, M. Rivas-Lopez, D. Hernandez-

Balbuena, W. Flores-Fuentes, J.C. Rodriguez-Quinonez, J.I. Nieto-Hipolito, W. Hernandez,

A. Tchernykh, Data transferring model determination in robotic group, Robotics and Au-

tonomous Systems, Volume 83, 2016, Pages 251-260

• Lars Lindner, Oleg Sergiyenko, Moises Rivas-Lopez, Daniel Hernandez-Balbuena, Wendy

126

Flores-Fuentes, Julio C. Rodriguez-Quinonez, Fabian N. Murrieta-Rico, Mykhailo Ivanov,

Vera Tyrsa, Luis C. Basaca-Preciado, (2017) "Exact laser beam positioning for measurement

of vegetation vitality", Industrial Robot: the international journal of robotics research and

application, Vol. 44 Issue: 4, pp. 532-541

International conferences

• Mykhailo Ivanov, Oleg Sergiyenko, Vera Tyrsa, Vladimir Kartashov, Yelizaveta Tolstykh,

MoisesRivas-Lopez, DanielHernandez-Balbuena, PaoloMercorelli, JulioRodriguez-Quinonez,

Wendy Flores-Fuentes, Lars Lindner, “Individual scans fusion in virtual knowledge base for

navigation of mobile robotic group with 3d TVS" 2017 Radar. Satellite Navigation. Ra-

diomonitoring, Kharkov, 2017, pp. 55-60.

• Mykhailo Ivanov, Oleg Sergiyenko, Vera Tyrsa, Paolo Mercorelli, Vladimir Kartashov,

Wilmar Hernandez, Sergiy Sheiko, Marina Kolendovska, Individual scans fusion in vir-

tual knowledge base for navigation of mobile robotic group with 3D TVS, IEEE, IECON

2018

• Ivanov, M.V., Sergiyenko, O. Y., Tyrsa, V. V., Lindner, L., Rodriguez-Quinonez, J. C., Flores-

Fuentes, W., Nieto Hipolito, J. I. (2019). Wireless integration to optimize environmental

recognition and calculate the trajectory of a group of robots. Proceedings of the Institute for

System Programming of the RAS, 31(2), 67-82.

• Ivanov, M., Sergiyenko, O., Mercorelli, P., Hernandez, W., Tyrsa, V., Hernandez-Balbuena,

D., Iryna, T. (2019, June). Effective informational entropy reduction in multi-robot sys-

127

tems based on real-time TVS. In 2019 IEEE 28th International Symposium on Industrial

Electronics (ISIE) (pp. 1162-1167). IEEE.

• O. Sergiyenko, V. Kartashov, M. Ivanov, D. Hernandez-Balbuena, V. Tyrsa and J. I. Nieto-

Hipolito, "Transferring model in robotic group,"2016 IEEE 25th International Symposium

on Industrial Electronics (ISIE), Santa Clara, CA, 2016, pp. 946-952.

• L. Lindner, Oleg Sergiyenko, Moises Rivas-Lopez, Mykhailo Ivanov, Julio C. Rodriguez-

Quinonez, Daniel Hernandez-Balbuena, Wendy Flores-Fuentes, Vera Tyrsa, Fabian N.

Murrieta-Rico, Paolo Mercorelli, "Machine vision system errors for unmanned aerial vehi-

cle navigation," 2017 IEEE 26th International Symposium on Industrial Electronics (ISIE),

Edinburgh, 2017, pp. 1615-1620.

• Miguel Reyes-Garcia, Lars Lindner, Moises Rivas-Lopez, Julio C. Rodriguez-Quinonez,

Wendy Flores-Fuentes, Mykhailo Ivanov, Fabian N.Murrieta-Rico, Alexander Gurko, Viktor

I. Melnik, Reduction of Angular Position Error of a Machine Vision System using the Digital

Controller LM629, IEEE, IECON 2018

• Reyes-Garcia, M., Sergiyenko, O., Ivanov, M., Lindner, L., Rodriguez-Quinonez, J. C.,

Hernandez-Balbuena, D., Murrieta-Rico, F. N. (2019, June). Defining the Final Angular

Position of DC Motor shaft using a Trapezoidal Trajectory Profile. In 2019 IEEE 28th

International Symposium on Industrial Electronics (ISIE) (pp. 1694-1699). IEEE.

• Hernandez, W., Mendez, A., Ballesteros, F., Gonzalez-Posada, V., Jimenez, J. L., Tyrsa, V.,

Ivanov, M. Quezada-Sarmiento, P. A. (2019, October). A method of image classification

128

by using multidimensional scaling. In IECON 2019-45th Annual Conference of the IEEE

Industrial Electronics Society (Vol. 1, pp. 5559-5565). IEEE.

Book chapters

• Mykhailo Ivanov, Lars Lindner, Oleg Sergiyenko, Julio Rodriguez-Quinonez, Wendy Flores-

Fuentes, Moises Rivas-Lopez (2018). Mobile Robot Path Planning Using Continuous Laser

Scanning, Optoelectronics in Machine Vision-Based Theories and Applications (pp. 300).

Hershey, Pennsylvania: IGI-Global.

• Ivanov, M., Sergiyenko, O., Tyrsa, V., Lindner, L., Reyes-Garcia, M., Rodriguez-Quinonez,

J. C., Hernandez-Balbuena, D. (2020). Data Exchange and Task of Navigation for Robotic

Group. In Machine Vision and Navigation (pp. 389-430). Springer, Cham.

• Reyes-Garcia, M., Sepulveda-Valdez, C., Sergiyenko, O., Rivas-Lopez, M., Rodriguez-

Quinonez, J. C., Flores-Fuentes, W., Ivanov, M. (2020). Digital Control Theory Application

and Signal Processing in a Laser Scanning System Applied for Mobile Robotics. In Control

and Signal Processing Applications for Mobile and Aerial Robotic Systems (pp. 215-265).

IGI Global.

Copyrights

• Mykhailo Ivanov, Oleg Sergiyenko, Vera Tyrsa, Lars Lindner, Julio Cesar Rodriguez –

Quinonez, Wendy Flores – Fuentes, Moisés Rivas, Daniel Hernandez Balbuena, Fabian

129

Nataniel Murrieta – Rico, Modelacion de la red para transferencia de datos en enjambre

robotico

• Miguel Reyes Garcia, Oleg Sergiyenko, Julio Cesar Rodriguez Quinonez, Wendy Flores

Fuentes, Moisés Rivas Lopez, Daniel Hernandez Balbuena, Fabian Nataniel Murrieta Rico,

Mykhailo Ivanov, Lars Lindner, Interfaz para la implementacion del Integrado LM629

130

References

[1] Qigao Fan et al. “Data fusion for indoor mobile robot positioning based on tightly coupled
INS/UWB”. In: The Journal of Navigation 70.5 (2017), pp. 1079–1097.

[2] Abduladhem A Ali et al. “An algorithm for multi-robot collision-free navigation based on
shortest distance”. In: Robotics and Autonomous Systems 75 (2016), pp. 119–128.

[3] Gregory Dudek et al. “A taxonomy for multi-agent robotics”. In: Autonomous Robots 3.4
(1996), pp. 375–397.

[4] AdhamAtyabi, Somnuk Phon-Amnuaisuk, andChinKuanHo. “Navigating a robotic swarm
in an uncharted 2D landscape”. In: Applied soft computing 10.1 (2010), pp. 149–169.

[5] Paul Levi, Eugen Meister, and Florian Schlachter. “Reconfigurable swarm robots produce
self-assembling and self-repairing organisms”. In: Robotics and Autonomous Systems 62.10
(2014), pp. 1371–1376.

[6] Alan Oliveira de Sá, Nadia Nedjah, and Luiza de Macedo Mourelle. “Distributed and
resilient localization algorithm for Swarm Robotic Systems”. In: Applied Soft Computing
57 (2017), pp. 738–750.

[7] Eric R Teoh and David G Kidd. “Rage against the machine? Google’s self-driving cars
versus human drivers”. In: Journal of safety research 63 (2017), pp. 57–60.

[8] Yoichi Morales et al. “Passenger discomfort map for autonomous navigation in a robotic
wheelchair”. In: Robotics and Autonomous Systems 103 (2018), pp. 13–26.

[9] Alan H Bond and Les Gasser. “A subject-indexed bibliography of distributed artificial in-
telligence”. In: IEEE transactions on systems, man, and cybernetics 22.6 (1992), pp. 1260–
1281.

[10] Alan H Bond and Les Gasser. Readings in distributed artificial intelligence. Morgan Kauf-
mann, 2014.

[11] Jérémy Boes and Frédéric Migeon. “Self-organizing multi-agent systems for the control
of complex systems”. In: Journal of Systems and Software 134 (2017), pp. 12–28. issn:
0164-1212. doi: https://doi.org/10.1016/j.jss.2017.08.038. url: http://www.sciencedirect.
com/science/article/pii/S0164121217301838.

131

http://dx.doi.org/https://doi.org/10.1016/j.jss.2017.08.038
http://www.sciencedirect.com/science/article/pii/S0164121217301838
http://www.sciencedirect.com/science/article/pii/S0164121217301838

[12] Ying Tan and Zhong-yang Zheng. “Research advance in swarm robotics”. In: Defence
Technology 9.1 (2013), pp. 18–39.

[13] Salima Nebti and Abdallah Boukerram. “Swarm intelligence inspired classifiers for facial
recognition”. In: Swarm and Evolutionary Computation 32 (2017), pp. 150–166.

[14] Michalis Mavrovouniotis, Changhe Li, and Shengxiang Yang. “A survey of swarm intelli-
gence for dynamic optimization: Algorithms and applications”. In: Swarm andEvolutionary
Computation 33 (2017), pp. 1–17.

[15] Lisa A Parr et al. “Recognizing facial cues: individual discrimination by chimpanzees
(Pan troglodytes) and rhesus monkeys (Macaca mulatta).” In: Journal of Comparative
Psychology 114.1 (2000), p. 47.

[16] Lisa A Parr and Frans BM de Waal. “Visual kin recognition in chimpanzees”. In: Nature
399.6737 (1999), p. 647.

[17] James A Shapiro. “Thinking about bacterial populations as multicellular organisms”. In:
Annual Reviews in Microbiology 52.1 (1998), pp. 81–104.

[18] J William Costerton et al. “Microbial biofilms”. In: Annual Reviews in Microbiology 49.1
(1995), pp. 711–745.

[19] Hans GWallraff and Hans GeorgWallraff. Avian navigation: pigeon homing as a paradigm.
Springer Science & Business Media, 2005.

[20] Duncan E Jackson and Francis LWRatnieks. “Communication in ants”. In:Current biology
16.15 (2006), R570–R574.

[21] Simon Goss et al. “Self-organized shortcuts in the Argentine ant”. In: Naturwissenschaften
76.12 (1989), pp. 579–581.

[22] Fabien Ravary et al. “Individual experience alone can generate lasting division of labor in
ants”. In: Current Biology 17.15 (2007), pp. 1308–1312.

[23] Jerome Buhl et al. “From disorder to order in marching locusts”. In: Science 312.5778
(2006), pp. 1402–1406.

[24] Quentin Bone and Richard Moore. Biology of fishes. Taylor & Francis, 2008.

[25] TJ Pitcher, AE Magurran, and IJ Winfield. “Fish in larger shoals find food faster”. In:
Behavioral Ecology and Sociobiology 10.2 (1982), pp. 149–151.

[26] Peter B Moyle and Joseph J Cech. Fishes: an introduction to ichthyology. 597. 2004.

[27] John RG Dyer et al. “Consensus decision making in human crowds”. In: Animal Behaviour
75.2 (2008), pp. 461–470.

132

[28] Davide Marocco and Stefano Nolfi. “Origins of communication in evolving robots”. In:
International Conference on Simulation of Adaptive Behavior. Springer. 2006, pp. 789–
803.

[29] Adam T Hayes, Alcherio Martinoli, and Rodney M Goodman. “Swarm robotic odor local-
ization: Off-line optimization and validation with real robots”. In: Robotica 21.4 (2003),
pp. 427–441.

[30] Marco A Montes de Oca et al. “Majority-rule opinion dynamics with differential latency:
a mechanism for self-organized collective decision-making”. In: Swarm Intelligence 5.3-4
(2011), pp. 305–327.

[31] Alexander Scheidler et al. “The k-Unanimity Rule for Self-Organized Decision-Making in
Swarms of Robots”. In: IEEE transactions on cybernetics 46.5 (2016), pp. 1175–1188.

[32] Gabriele Valentini, Heiko Hamann, and Marco Dorigo. “Efficient Decision-Making in a
Self-Organizing Robot Swarm: On the Speed Versus Accuracy Trade-Off”. In: Proceed-
ings of the 2015 International Conference on Autonomous Agents and Multiagent Systems.
AAMAS ’15. Istanbul, Turkey: International Foundation for Autonomous Agents and Mul-
tiagent Systems, 2015, pp. 1305–1314. isbn: 978-1-4503-3413-6. url: http://dl.acm.org/
citation.cfm?id=2772879.2773319.

[33] Jens Wawerla, Gaurav S Sukhatme, and Maja J Mataric. “Collective construction with mul-
tiple robots”. In: Intelligent Robots and Systems, 2002. IEEE/RSJ International Conference
on. Vol. 3. IEEE. 2002, pp. 2696–2701.

[34] Justin Werfel, Yaneer Bar-Yam, and Radhika Nagpal. “Building patterned structures with
robot swarms”. In: IJCAI. 2005, pp. 1495–1504.

[35] Michael Allwright et al. “SRoCS: Leveraging stigmergy on a multi-robot construction
platform for unknown environments”. In: International Conference on Swarm Intelligence.
Springer. 2014, pp. 158–169.

[36] Roderich Groß et al. “Autonomous self-assembly in a swarm-bot”. In: Proceedings of the
3rd International Symposium on Autonomous Minirobots for Research and Edutainment
(AMiRE 2005). Springer. 2006, pp. 314–322.

[37] Elio Tuci et al. “Self-Assembly in Physical Autonomous Robots-the Evolutionary Robotics
Approach.” In: ALIFE. 2008, pp. 616–623.

[38] Vito Trianni, Stefano Nolfi, and Marco Dorigo. “Cooperative hole avoidance in a swarm-
bot”. In: Robotics and Autonomous Systems 54.2 (2006), pp. 97–103.

[39] Rehan O’Grady et al. “Self-assembly strategies in a group of autonomous mobile robots”.
In: Autonomous Robots 28.4 (2010), pp. 439–455.

133

http://dl.acm.org/citation.cfm?id=2772879.2773319
http://dl.acm.org/citation.cfm?id=2772879.2773319

[40] S. Bashyal and G. K. Venayagamoorthy. “Human swarm interaction for radiation source
search and localization”. In: 2008 IEEE Swarm Intelligence Symposium. Sept. 2008, pp. 1–
8. doi: 10.1109/SIS.2008.4668287.

[41] P.Walker et al. “Human control of robot swarms with dynamic leaders”. In: 2014 IEEE/RSJ
International Conference on Intelligent Robots and Systems. Sept. 2014, pp. 1108–1113.
doi: 10.1109/IROS.2014.6942696.

[42] Andreas Kolling et al. “Human-swarm Interaction: An Experimental Study of Two Types of
Interaction with Foraging Swarms”. In: J. Hum.-Robot Interact. 2.2 (June 2013), pp. 103–
129. issn: 2163-0364. doi: 10.5898/JHRI.2.2.Kolling. url: https://doi.org/10.5898/JHRI.
2.2.Kolling.

[43] Rehan O’Grady, Anders Lyhne Christensen, and Marco Dorigo. “SWARMORPH: multi-
robot morphogenesis using directional self-assembly”. In: IEEE Transactions on Robotics
25.3 (2009), pp. 738–743.

[44] Manuele Brambilla et al. “A reliable distributed algorithm for group size estimation with
minimal communication requirements”. In: Advanced Robotics, 2009. ICAR 2009. Inter-
national Conference on. IEEE. 2009, pp. 1–6.

[45] Levent Bayındır. “A review of swarm robotics tasks”. In: Neurocomputing 172 (2016),
pp. 292–321.

[46] Shiming Chen and Huajing Fang. “Modeling and behavior analysis of large-scale social
foraging swarm”. In: Control and Decision 20.12 (2005), p. 1392.

[47] Gerardo Beni. “The concept of cellular robotic system”. In: Intelligent Control, 1988.
Proceedings., IEEE International Symposium on. IEEE. 1988, pp. 57–62.

[48] Hajime Asama, Akihiro Matsumoto, and Yoshiki Ishida. “Design Of An Autonomous And
Distributed Robot System: Actress.” In: IROS. Vol. 89. 1989, pp. 283–290.

[49] David Payton et al. “Pheromone robotics”. In: Autonomous Robots 11.3 (2001), pp. 319–
324.

[50] David Payton, Regina Estkowski, and Mike Howard. “Compound behaviors in pheromone
robotics”. In: Robotics and Autonomous Systems 44.3-4 (2003), pp. 229–240.

[51] Erol Şahin. “Swarm robotics: From sources of inspiration to domains of application”. In:
International workshop on swarm robotics. Springer. 2004, pp. 10–20.

[52] James McLurkin and Jennifer Smith. “Distributed algorithms for dispersion in indoor envi-
ronments using a swarm of autonomous mobile robots”. In: in 7th International Symposium
on Distributed Autonomous Robotic Systems (DARS. Citeseer. 2004.

134

http://dx.doi.org/10.1109/SIS.2008.4668287
http://dx.doi.org/10.1109/IROS.2014.6942696
http://dx.doi.org/10.5898/JHRI.2.2.Kolling
https://doi.org/10.5898/JHRI.2.2.Kolling
https://doi.org/10.5898/JHRI.2.2.Kolling

[53] Francesco Mondada et al. “The e-puck, a robot designed for education in engineering”. In:
Proceedings of the 9th conference on autonomous robot systems and competitions. Vol. 1.
IPCB: Instituto Politécnico de Castelo Branco. 2009, pp. 59–65.

[54] Ali E Turgut et al. “Self-organized flocking inmobile robot swarms”. In: Swarm Intelligence
2.2-4 (2008), pp. 97–120.

[55] Michael Rubenstein, Christian Ahler, and Radhika Nagpal. “Kilobot: A low cost scalable
robot system for collective behaviors”. In: Robotics and Automation (ICRA), 2012 IEEE
International Conference on. IEEE. 2012, pp. 3293–3298.

[56] Jörg Seyfried et al. “The I-SWARM project: Intelligent small world autonomous robots
for micro-manipulation”. In: International Workshop on Swarm Robotics. Springer. 2004,
pp. 70–83.

[57] Samuel N Beshers and Jennifer H Fewell. “Models of division of labor in social insects”.
In: Annual review of entomology 46.1 (2001), pp. 413–440.

[58] Vito Trianni et al. “Evolutionary swarm robotics: A theoretical andmethodological itinerary
from individual neuro-controllers to collective behaviours”. In:The horizons of evolutionary
robotics 153 (2014).

[59] Régis Vincent et al. “Centibots: Large-Scale Autonomous Robotic Search and Rescue
Experiment”. In: (2008).

[60] Marco Dorigo, Mauro Birattari, et al. “Swarm intelligence”. In: Scholarpedia 2.9 (2007),
p. 1462.

[61] Paul E Rybski et al. “System architecture for versatile autonomous and teleoperated control
of multiple miniature robots”. In: Robotics and Automation, 2001. Proceedings 2001 ICRA.
IEEE International Conference on. Vol. 3. IEEE. 2001, pp. 2917–2922.

[62] Patricia Suárez, Andrés Iglesias, and Akemi Gálvez. “Make robots be bats: specializing
robotic swarms to the Bat algorithm”. In: Swarm and Evolutionary Computation (2018).

[63] Claudio O Vilão et al. “A single camera vision system for a humanoid robot”. In: Robotics:
SBR-LARS Robotics Symposium and Robocontrol (SBR LARS Robocontrol), 2014 Joint
Conference on. IEEE. 2014, pp. 181–186.

[64] NikolaiGryaznov andAlexander Lopota. “Computer vision formobile on-ground robotics”.
In: Procedia Engineering 100 (2015), pp. 1376–1380.

[65] Davide Scaramuzza et al. “Vision-controlled micro flying robots: from system design to
autonomous navigation and mapping in GPS-denied environments”. In: IEEE Robotics &
Automation Magazine 21.3 (2014), pp. 26–40.

[66] Guillem Alenyà, Sergi Foix, and Carme Torras. “ToF cameras for active vision in robotics”.
In: Sensors and Actuators A: Physical 218 (2014), pp. 10–22.

135

[67] Chelsea Sabo et al. “A lightweight, inexpensive robotic system for insect vision”. In:
Arthropod structure & development 46.5 (2017), pp. 689–702.

[68] Daniel Wahrmann et al. “Fast object approximation for real-time 3D obstacle avoidance
with biped robots”. In: Advanced Intelligent Mechatronics (AIM), 2016 IEEE International
Conference on. IEEE. 2016, pp. 38–45.

[69] Kimberly McGuire et al. “Efficient Optical Flow and Stereo Vision for Velocity Estima-
tion and Obstacle Avoidance on an Autonomous Pocket Drone.” In: IEEE Robotics and
Automation Letters 2.2 (2017), pp. 1070–1076.

[70] Jeng-Han Li, Yi-Shing Ho, and Jia-Jie Huang. “Line Tracking with Pixy Cameras on
a Wheeled Robot Prototype”. In: 2018 IEEE International Conference on Consumer
Electronics-Taiwan (ICCE-TW). IEEE. 2018, pp. 1–2.

[71] Albert SHuang et al. “Visual odometry andmapping for autonomous flight using anRGB-D
camera”. In: Robotics Research. Springer, 2017, pp. 235–252.

[72] Joseph W Starr and BY Lattimer. “Evidential sensor fusion of long-wavelength infrared
stereo vision and 3D-LIDAR for rangefinding in fire environments”. In: Fire Technology
53.6 (2017), pp. 1961–1983.

[73] HanWoongYoo et al. “MEMS-based lidar for autonomous driving”. In: e& i Elektrotechnik
und Informationstechnik (2018), pp. 1–8.

[74] Ji Zhang and Sanjiv Singh. “Low-drift and real-time lidar odometry and mapping”. In:
Autonomous Robots 41.2 (2017), pp. 401–416.

[75] Peter Kinnell et al. “Autonomous metrology for robot mounted 3D vision systems”. In:
CIRP Annals 66.1 (2017), pp. 483–486.

[76] Filip Šuligoj et al. “Object tracking with a multiagent robot system and a stereo vision
camera”. In: Procedia Engineering (2014), pp. 968–973.

[77] Marcos Ferreira et al. “Stereo-based real-time 6-DoF work tool tracking for robot pro-
graming by demonstration”. In: The International Journal of Advanced Manufacturing
Technology 85.1-4 (2016), pp. 57–69.

[78] Stefano Pellegrini and Luca Iocchi. “Human Posture Tracking and Classification through
Stereo Vision and 3D Model Matching”. In: EURASIP Journal on Image and Video Pro-
cessing 2008.1 (Dec. 2007), p. 476151. issn: 1687-5281. doi: 10.1155/2008/476151. url:
https://doi.org/10.1155/2008/476151.

[79] Hema Chengalvarayan Radhakrishnamurthy et al. “Stereo vision system for a bin picking
adept robot”. In: Malaysian Journal of Computer Science 20.1 (2017), pp. 91–98.

[80] Suman Saha, Ashutosh Natraj, and Sonia Waharte. “A real-time monocular vision-based
frontal obstacle detection and avoidance for low cost UAVs in GPS denied environment”.

136

http://dx.doi.org/10.1155/2008/476151
https://doi.org/10.1155/2008/476151

In: 2014 IEEE International Conference on Aerospace Electronics and Remote Sensing
Technology. IEEE. 2014, pp. 189–195.

[81] F Adib Yaghmaie, A Mobarhani, and HD Taghirad. “A new method for mobile robot navi-
gation in dynamic environment: Escaping algorithm”. In: 2013 First RSI/ISM International
Conference on Robotics and Mechatronics (ICRoM). IEEE. 2013, pp. 212–217.

[82] Zhuhong Zhang, Shigang Yue, and Guopeng Zhang. “Fly visual system inspired artificial
neural network for collision detection”. In: Neurocomputing 153 (2015), pp. 221–234.

[83] Sergi Bermudez i Badia, Pawel Pyk, and Paul FMJ Verschure. “A fly-locust based neuronal
control system applied to an unmanned aerial vehicle: the invertebrate neuronal principles
for course stabilization, altitude control and collision avoidance”. In: The International
Journal of Robotics Research 26.7 (2007), pp. 759–772.

[84] Nicolas Franceschini et al.Optic flow based visual guidance: from flying insects tominiature
aerial vehicles. INTECH Open Access Publisher, 2009.

[85] Mark Blanchard, F Claire Rind, and Paul FMJ Verschure. “Collision avoidance using a
model of the locust LGMD neuron”. In: Robotics and Autonomous Systems 30.1-2 (2000),
pp. 17–38.

[86] Sergi Bermudez i Badia, Ulysses Bernardet, and Paul FMJ Verschure. “Non-linear neuronal
responses as an emergent property of afferent networks: A case study of the locust lobula
giant movement detector”. In: PLoS computational biology 6.3 (2010).

[87] Ana Carolina Silva, Jorge Silva, and Cristina Peixoto dos Santos. “Amodified LGMDbased
neural network for automatic collision detection”. In: Informatics in Control, Automation
and Robotics. Springer, 2014, pp. 217–233.

[88] Shigang Yue and F Claire Rind. “Collision detection in complex dynamic scenes using an
LGMD-based visual neural network with feature enhancement”. In: IEEE transactions on
neural networks 17.3 (2006), pp. 705–716.

[89] Hongying Meng et al. “A modified model for the Lobula Giant Movement Detector and
its FPGA implementation”. In: Computer vision and image understanding 114.11 (2010),
pp. 1238–1247.

[90] Reid RHarrison. “A biologically inspired analog IC for visual collision detection”. In: IEEE
Transactions on Circuits and Systems I: Regular Papers 52.11 (2005), pp. 2308–2318.

[91] Hirotsugu Okuno and Tetsuya Yagi. “A visually guided collision warning system with a
neuromorphic architecture”. In: Neural networks 21.10 (2008), pp. 1431–1438.

[92] Sergi Foix, Guillem Alenya, and Carme Torras. “Lock-in time-of-flight (ToF) cameras: A
survey”. In: IEEE Sensors Journal 11.9 (2011), pp. 1917–1926.

137

[93] Elena Stoykova et al. “3-D time-varying scene capture technologies—A survey”. In: IEEE
Transactions on Circuits and Systems for Video Technology 17.11 (2007), pp. 1568–1586.

[94] R Hartley and A Zisserman. “Multiple view geometry in computer vision, 2nd edn Cam-
bridge University Press”. In: (2000).

[95] Mikhail Ivanov et al. “Data Exchange and Task of Navigation for Robotic Group”. In:
Machine Vision and Navigation. Springer, 2020, pp. 389–430.

[96] OYu Sergiyenko. “Optoelectronic system formobile robot navigation”. In:Optoelectronics,
Instrumentation and Data Processing 46.5 (2010), pp. 414–428.

[97] Julio C Rodriguez-Quinonez et al. “Surface recognition improvement in 3D medical laser
scanner using Levenberg–Marquardt method”. In: Signal Processing 93.2 (2013), pp. 378–
386.

[98] Luis C Basaca-Preciado et al. “Optical 3D laser measurement system for navigation of
autonomous mobile robot”. In: Optics and Lasers in Engineering 54 (2014), pp. 159–169.

[99] O Yu Sergiyenko et al. “Data transferring model determination in robotic group”. In:
Robotics and Autonomous Systems 83 (2016), pp. 251–260.

[100] Lars Lindner et al. “Machine vision system for UAV navigation”. In: Electrical Systems
for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation
ElectrificationConference (ESARS-ITEC), International Conference on. IEEE. 2016, pp. 1–
6.

[101] Lars Lindner et al. “Exact laser beam positioning for measurement of vegetation vitality”.
In: Industrial Robot: An International Journal 44.4 (2017), pp. 532–541.

[102] Oleg Sergiyenko et al. “Remote sensor for spatial measurements by using optical scanning”.
In: Sensors 9.7 (2009), pp. 5477–5492.

[103] Luis C Básaca et al. “Resolution improvement of dynamic triangulation method for 3D
vision system in robot navigation task”. In: IECON 2010-36th Annual Conference on IEEE
Industrial Electronics Society. IEEE. 2010, pp. 2886–2891.

[104] BK Patle et al. “Matrix-Binary Codes based Genetic Algorithm for path planning of mobile
robot”. In: Computers & Electrical Engineering 67 (2018), pp. 708–728.

[105] Oleg Sergiyenko et al. Transferring model in robotic group. Santa Clara: 2016 IEEE 25th
International Symposium on Industrial Electronics (ISIE), 2016. doi: 10.1109/isie.2016.
7745018.

[106] Luis C. Basaca-Preciado et al. “Optical 3D laser measurement system for navigation of
autonomous mobile robot”. In: Optics and Lasers in Engineering 54 (2014), pp. 159–169.
issn: 0143-8166. doi: 10.1016/j.optlaseng.2013.08.005.

138

http://dx.doi.org/10.1109/isie.2016.7745018
http://dx.doi.org/10.1109/isie.2016.7745018
http://dx.doi.org/10.1016/j.optlaseng.2013.08.005

[107] JC Rodriguez-Quinonez et al. “Improve 3D laser scanner measurements accuracy us-
ing a FFBP neural network with Widrow-Hoff weight/bias learning function”. In: Opto-
Electronics Review 22.4 (2014), pp. 224–235.

[108] JC Rodriguez-Quinonez et al. “Improve a 3D distance measurement accuracy in stereo
vision systems using optimization methods’ approach”. In: Opto-Electronics Review 25.1
(2017), pp. 24–32.

[109] XM Garcia-Cruz et al. “Optimization of 3D laser scanning speed by use of combined
variable step”. In: Optics and Lasers in Engineering 54 (2014), pp. 141–151.

[110] Lars Lindner et al. “Continuous 3D scanning mode using servomotors instead of stepping
motors in dynamic laser triangulation”. In: Industrial Electronics (ISIE), 2015 IEEE 24th
International Symposium on. IEEE. 2015, pp. 944–949.

[111] Lars Lindner et al. “Mobile robot vision system using continuous laser scanning for in-
dustrial application”. In: Industrial Robot: An International Journal 43.4 (2016), pp. 360–
369.

[112] Mykhailo Ivanov et al. “Mobile Robot Path Planning Using Continuous Laser Scanning”.
In:Optoelectronics in Machine Vision-Based Theories and Applications. IGI Global, 2019,
pp. 338–372.

[113] Marco Dorigo, Eric Bonabeau, and Guy Theraulaz. “Ant algorithms and stigmergy”. In:
Future Generation Computer Systems 16.8 (2000), pp. 851–871.

[114] SwarmCommunication. Jasmine: swarm robot platform. 2015.url: http://www.swarmrobot.
org/Communication.html (visited on 09/30/2015).

[115] Bart Braem et al. “The wireless autonomous spanning tree protocol for multihop wireless
body area networks”. In: Mobile and Ubiquitous Systems: Networking & Services, 2006
Third Annual International Conference on. IEEE. 2006, pp. 1–8.

[116] D Fedyk et al. IS-IS extensions supporting IEEE 802.1 aq shortest path bridging. Tech. rep.
2012.

[117] Neil Briscoe. “Understanding theOSI 7-layermodel”. In:PCNetworkAdvisor 120.2 (2000),
pp. 13–16.

[118] Yadong Li et al. “Research based on OSI model”. In: 2011 IEEE 3rd International Confer-
ence on Communication Software and Networks. IEEE. 2011, pp. 554–557.

[119] David J Grymin, Charles B Neas, and Mazen Farhood. “A hierarchical approach for
primitive-based motion planning and control of autonomous vehicles”. In: Robotics and
Autonomous Systems 62.2 (2014), pp. 214–228.

[120] Hung T Nguyen and Elbert A Walker. A first course in fuzzy logic. CRC press, 2005.

139

http://www.swarmrobot.org/Communication.html
http://www.swarmrobot.org/Communication.html

[121] Regis Vincent et al. “Centibots: Large-scale autonomous robotic search and rescue ex-
periment”. In: 2nd International Joint Topical Meeting on Emergency Preparedness &
Response and Robotics & Remote Systems (2008).

[122] Thomas H Cormen et al. Introduction to algorithms. MIT press, 2009.

[123] Anany Levitin. Introduction to the design & analysis of algorithms. Boston: Pearson, 2012.

[124] Stuart J Russell and Peter Norvig. Artificial intelligence: a modern approach. Malaysia;
Pearson Education Limited, 2016.

[125] Eric Bonabeau et al. Swarm intelligence: from natural to artificial systems. 1. Oxford
university press, 1999.

[126] Bence Kovács et al. “A novel potential field method for path planning of mobile robots
by adapting animal motion attributes”. In: Robotics and Autonomous Systems 82 (2016),
pp. 24–34.

[127] Stefan Hougardy. “The Floyd–Warshall algorithm on graphs with negative cycles”. In:
Information Processing Letters 110.8-9 (2010), pp. 279–281.

[128] Santiago Manen, Matthieu Guillaumin, and Luc Van Gool. “Prime object proposals with
randomized prim’s algorithm”. In: Proceedings of the IEEE international conference on
computer vision. 2013, pp. 2536–2543.

[129] Laurent Najman, Jean Cousty, and Benjamin Perret. “Playing with kruskal: algorithms for
morphological trees in edge-weighted graphs”. In: International Symposium on Mathemat-
ical Morphology and Its Applications to Signal and Image Processing. Springer. 2013,
pp. 135–146.

[130] Hwan Il Kang, Byunghee Lee, and Kabil Kim. “Path planning algorithm using the particle
swarm optimization and the improved Dijkstra algorithm”. In: 2008 IEEE Pacific-Asia
Workshop on Computational Intelligence and Industrial Application. Vol. 2. IEEE. 2008,
pp. 1002–1004.

[131] Fan Hsun Tseng et al. “A star search algorithm for civil UAV path planning with 3G
communication”. In: 2014Tenth InternationalConference on Intelligent InformationHiding
and Multimedia Signal Processing. IEEE. 2014, pp. 942–945.

[132] Junfeng Yao et al. “Path planning for virtual human motion using improved A* star algo-
rithm”. In: 2010 Seventh international conference on information technology: new genera-
tions. IEEE. 2010, pp. 1154–1158.

[133] SarahAlnasser andHachemi Bennaceur. “An efficient genetic algorithm for the global robot
path planning problem”. In: 2016 Sixth International Conference on Digital Information
and Communication Technology and its Applications (DICTAP). IEEE. 2016, pp. 97–102.

140

[134] Lydia E Kavraki and Jean-Claude Latombe. “Probabilistic roadmaps for robot path plan-
ning”. In: (1998).

[135] Matthew Baumann et al. “Path planning for improved visibility using a probabilistic road
map”. In: IEEE Transactions on Robotics 26.1 (2010), pp. 195–200.

[136] Karl Berntorp. “Path planning and integrated collision avoidance for autonomous vehicles”.
In: 2017 American Control Conference (ACC). IEEE. 2017, pp. 4023–4028.

[137] Ritu Tiwari. Intelligent planning for mobile robotics: algorithmic approaches: algorithmic
approaches. IGI Global, 2012.

[138] Vladimir Lumelsky and Alexander Stepanov. “Dynamic path planning for a mobile au-
tomaton with limited information on the environment”. In: IEEE transactions on Automatic
control 31.11 (1986), pp. 1058–1063.

[139] A Sankaranarayanan and M Vidyasagar. “A new path planning algorithm for moving a
point object amidst unknown obstacles in a plane”. In: Proceedings., IEEE International
Conference on Robotics and Automation. IEEE. 1990, pp. 1930–1936.

[140] A Sankaranarayanar and M Vidyasagar. “Path planning for moving a point object amidst
unknown obstacles in a plane: a new algorithm and a general theory for algorithm de-
velopment”. In: 29th IEEE Conference on Decision and Control. IEEE. 1990, pp. 1111–
1119.

[141] Ishay Kamon and Ehud Rivlin. “Sensory-based motion planning with global proofs”. In:
IEEE transactions on Robotics and Automation 13.6 (1997), pp. 814–822.

[142] H Noborio. “A path-planning algorithm for generation of an intuitively reasonable path in
an uncertain 2D workspace”. In: Proc. of the Japan-USA Symp. on Flexible Automation.
Vol. 3. 1990, pp. 477–480.

[143] Hiroshi Noborio, Keiichi Fujimura, and Yohei Horiuchi. “A comparative study of sensor-
based path-planning algorithms in an unknownmaze”. In: Proceedings. 2000 IEEE/RSJ In-
ternationalConference on Intelligent Robots and Systems (IROS2000)(Cat. No. 00CH37113).
Vol. 2. IEEE. 2000, pp. 909–916.

[144] IshayKamon, ElonRimon, andEhudRivlin. “Tangentbug:A range-sensor-based navigation
algorithm”. In: The International Journal of Robotics Research 17.9 (1998), pp. 934–953.

[145] MandyamVSrinivasan et al. “Vision andNavigation in Insects, andApplications toAircraft
Guidance”. In: (2014).

[146] Mandyam V Srinivasan et al. “From biology to engineering: insect vision and applications
to robotics”. In: Frontiers in sensing. Springer, 2012, pp. 19–39.

[147] František Duchoň et al. “Path planning with modified a star algorithm for a mobile robot”.
In: Procedia Engineering 96 (2014), pp. 59–69.

141

[148] Pierre E. Bézier. How Renault Uses Numerical Control for Car Body Design and Tooling.
Detroit, MI, USA: Society of Automotive Engineers, 1968. doi: 10.4271/680010.

[149] Pierre Bezier. “Example of an Existing System in theMotor Industry: The Unisurf System”.
In: Proceedings of the Royal Society of London A321 (1971), pp. 207–218.

[150] Kuniaki Kawabata et al. “A path generation for automated vehicle based on Bezier curve
and via-points”. In: Robotics and Autonomous Systems 74 (2015), pp. 243–252.

[151] L. Han et al. “Bézier curve based path planning for autonomous vehicle in urban envi-
ronment”. In: 2010 IEEE Intelligent Vehicles Symposium. June 2010, pp. 1036–1042. doi:
10.1109/IVS.2010.5548085.

[152] Bhargav Jha, Vladimir Turetsky, and Tal Shima. “Robust Path Tracking by a Dubins Ground
Vehicle”. In: IEEE Transactions on Control Systems Technology (2018).

[153] J. Rosenblatt. “DAMN: Distributed Architecture for Mobile Navigation”. In: Journal of
Experimental and Theoretical Artificial Intelligence 9 (2-3 1997), pp. 339–360.

[154] Paul Levi and Serge Kernbach. Symbiotic multi-robot organisms: reliability, adaptability,
evolution. Vol. 7. Springer Science & Business Media, 2010.

[155] Erol Sahin andAlan FTWinfield. “Special issue on swarm robotics.” In: Swarm Intelligence
2.2-4 (2008), pp. 69–72.

[156] MiguelDuarte et al. “JBotEvolver:Aversatile simulation platform for evolutionary robotics”.
In: Proceedings of the 14th International Conference on the Synthesis & Simulation of Liv-
ing Systems. MIT Press, Cambridge, MA. Citeseer. 2014, pp. 210–211.

[157] Brett Browning and Erick Tryzelaar. “Übersim: a multi-robot simulator for robot soccer”.
In: Proceedings of the second international joint conference on Autonomous agents and
multiagent systems. ACM. 2003, pp. 948–949.

[158] Su Zhibao, Zhang Haojie, and Zhu Sen. “A robotic simulation system combined USARSim
and RCS library”. In: Intelligent Robot Systems (ACIRS), 2017 2nd Asia-Pacific Conference
on. IEEE. 2017, pp. 240–243.

[159] Jon Klein and Lee Spector. “3d multi-agent simulations in the breve simulation environ-
ment”. In: Artificial life models in software. Springer, 2009, pp. 79–106.

[160] Eric Rohmer, Surya PN Singh, and Marc Freese. “V-REP: A versatile and scalable robot
simulation framework”. In: Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ Inter-
national Conference on. IEEE. 2013, pp. 1321–1326.

[161] Olivier Michel. “Cyberbotics Ltd. Webots™: Professional Mobile Robot Simulation”. In:
International Journal of Advanced Robotic Systems 1.1 (2004), p. 5. doi: 10.5772/5618.

142

http://dx.doi.org/10.4271/680010
http://dx.doi.org/10.1109/IVS.2010.5548085
http://dx.doi.org/10.5772/5618

[162] Fadri Furrer et al. “Rotors—A modular gazebo mav simulator framework”. In: Robot
Operating System (ROS). Springer, 2016, pp. 595–625.

[163] Carlo Pinciroli et al. “ARGoS: a modular, multi-engine simulator for heterogeneous swarm
robotics”. In: Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Confer-
ence on. IEEE. 2011, pp. 5027–5034.

[164] Okan Aşık and H Levent Akın. “Solving multi-agent decision problems modeled as dec-
pomdp: A robot soccer case study”. In: RoboCup 2012: Robot Soccer World Cup XVI.
Springer, 2013, pp. 130–140.

[165] Patrick Felicia. “Unity 5 from Proficiency to Mastery: Artificial Intelligence”. In: (2017).

[166] Yong Deng et al. “Fuzzy Dijkstra algorithm for shortest path problem under uncertain
environment”. In: Applied Soft Computing 12 (3 2012), pp. 1231–1237.

[167] Elias K. Xidias and Philip N. Azariadis. “Computing collision-free motions for a team
of robots using formation and non-holonomic constraints”. In: Robotics and Autonomous
Systems 82 (Aug. 2016), pp. 15–23. issn: 0921-8890. doi: 10.1016/j.robot.2016.04.008.

[168] Israel Lugo-Cárdenas et al. “Dubins path generation for a fixed wing UAV”. In: Unmanned
Aircraft Systems (ICUAS), 2014 International Conference on. IEEE. 2014, pp. 339–346.

[169] Nare Karapetyan et al. “Multi-robot Dubins Coverage with Autonomous Surface Vehicles”.
In: 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE. 2018,
pp. 2373–2379.

[170] Zhu Wang et al. “Enhanced sparse A* search for UAV path planning using dubins path
estimation”. In: Control Conference (CCC), 2014 33rd Chinese. IEEE. 2014, pp. 738–742.

[171] Claude Elwood Shannon. “A mathematical theory of communication”. In: ACM SIGMO-
BILE mobile computing and communications review 5.1 (2001), pp. 3–55.

[172] Erich Schubert et al. “DBSCAN revisited, revisited: why and how you should (still) use
DBSCAN”. In: ACM Transactions on Database Systems (TODS) 42.3 (2017), p. 19.

143

http://dx.doi.org/10.1016/j.robot.2016.04.008

Appendix A

using UnityEngine;

using System.Collections;

using System.Collections.Generic;

public class Unit : MonoBehaviour {

public int id;

public bool reached { get; set; }

const float minPathUpdateTime = .2f;

const float pathUpdateMoveThreshold = .5f;

public Transform[] targets;

int targetID = 0;

Transform target;

float speed;

144

Path path;

List<Vector3> playerPos = new List<Vector3>();

LineRenderer lineRenderer;

void Start() {

System.IO.Directory.CreateDirectory(config.path

+ config.mode

+ "\\R" + GetComponent<Unit>().id.ToString()

+ "\\traks\\");

string trackHead = "time,x,y,z,roll,pitch,yaw"+System.Environment.NewLine;

System.IO.File.AppendAllText(config.path

+ config.mode

+ "\\R" + GetComponent<Unit>().id.ToString()

+ "\\traks\\"

+ "\\TE" + config.experiment.ToString() + ".txt", trackHead);

145

Color red = Color.red;

lineRenderer = GetComponent<LineRenderer>();

lineRenderer.startColor = red;

lineRenderer.endColor = red;

lineRenderer.startWidth = 0.5f;

lineRenderer.endWidth = 0.5f;

speed = config.speedLow;

target = targets[targetID];

InvokeRepeating("RequestPath", 2.0f, 0.3f);

}

public void OnPathFound(Vector3[] waypoints, bool pathSuccessful) {

if (pathSuccessful) {

path = new Path(waypoints, transform.position,

config.turnDst, config.stoppingDst);

StopCoroutine("FollowPath");

StartCoroutine("FollowPath");

}

146

}

void Update()

{

playerPos.Add(transform.position);

lineRenderer.numPositions = playerPos.Count;

for (int i = 0; i < playerPos.Count; i++)

{

lineRenderer.SetPosition(i, playerPos[i]);

}

string track = Time.realtimeSinceStartup.ToString() + ","

+ transform.position.x.ToString() + ","

+ transform.position.y.ToString() + ","

+ transform.position.z.ToString() + ","

+ transform.rotation.x.ToString() + ","

+ transform.rotation.y.ToString() + ","

+ transform.rotation.z.ToString()

+ System.Environment.NewLine;

System.IO.File.AppendAllText(config.path

147

+ config.mode

+ "\\R" + GetComponent<Unit>().id.ToString()

+ "\\traks\\"

+ "\\TE" + config.experiment.ToString() + ".txt", track);

}

public void RequestPath()

{

if (Vector3.Distance(transform.position, target.position) < 5

&& targetID < (targets.Length - 1))

{

targetID++;

target = targets[targetID];

}

if (Vector3.Distance(transform.position, target.position) < 5

&& targetID == (targets.Length - 1))

{

reached = true;

}

GameObject.Find("Grid").GetComponent<PathRequestManager>()

.RequestPath(new PathRequest(transform.position, target.position, OnPathFound));

148

}

IEnumerator FollowPath() {

bool followingPath = true;

int pathIndex = 0;

float speedPercent = 1;

float obstProx = GetComponent<TVSRay>().obstacleProximity;

float maxVis = config.viewRadius;

if (config.speedControll)

{

if (obstProx > 2 * maxVis / 3)

speed = config.speedMax;

if ((obstProx > (maxVis / 3)) & (obstProx <= (2 * maxVis / 3)))

speed = config.speedMed;

149

if (obstProx > 0 & obstProx <= (maxVis / 3))

speed = config.speedLow;

}

while (followingPath) {

Vector2 pos2D = new Vector2 (transform.position.x, transform.position.z);

while (path.turnBoundaries [pathIndex].HasCrossedLine (pos2D)) {

if (pathIndex == path.finishLineIndex) {

followingPath = false;

break;

} else {

pathIndex++;

}

}

if (followingPath) {

if (pathIndex >= path.slowDownIndex && config.stoppingDst > 0) {

speedPercent = Mathf.Clamp01 (

path.turnBoundaries [path.finishLineIndex].DistanceFromPoint (pos2D) /

config.stoppingDst);

if (speedPercent < 0.01f) {

150

followingPath = false;

}

}

Quaternion targetRotation =

Quaternion.LookRotation (path.lookPoints [pathIndex] - transform.position);

transform.rotation =

Quaternion.Lerp (transform.rotation, targetRotation,

Time.deltaTime * config.turnSpeed);

transform.Translate

(Vector3.forward * Time.deltaTime * speed * speedPercent, Space.Self);

}

yield return null;

}

}

public void OnDrawGizmos() {

if (path != null) {

path.DrawWithGizmos(transform.position);

}

151

}

}

using System;

using System.Collections.Generic;

using UnityEngine;

class TVSRay : MonoBehaviour

{

public LayerMask obstacleMask;

public float vertDispAngle = 90;

float angle_ver;

int stepCount;

float stepAngleSize;

//float angle;

float angle2;

152

public GameObject commonGrid;

string scan;

string frames = "";

public float obstacleProximity { get; set; }

void Awake()

{

stepCount = Mathf.RoundToInt(config.viewAngle * config.meshResolution);

stepAngleSize = config.viewAngle / stepCount;

}

void Start()

{

System.IO.Directory.CreateDirectory(config.path

+ config.mode

+ "\\R" + GetComponent<Unit>().id.ToString()

+ "\\proximities\\");

System.IO.Directory.CreateDirectory(config.path

+ config.mode

+ "\\R" + GetComponent<Unit>().id.ToString()

153

+ "\\frames\\");

//frames = "{"+ System.Environment.NewLine+"\t\"frames\":["+

System.Environment.NewLine;

//frames = "[";//+ System.Environment.NewLine;

}

void OnApplicationQuit()

{

//frames = frames.Remove(frames.Length - 3) + System.Environment.NewLine;

//frames += "\t]"+ System.Environment.NewLine;

System.IO.File.AppendAllText(config.path

+ config.mode

+ "\\R" + GetComponent<Unit>().id.ToString()

+ "\\frames\\"

+ "\\FE" + config.experiment.ToString() + ".json", frames);

}

void LateUpdate()

{

DrawFieldOfView();

DrawFieldOfViewBeam();

}

154

ViewCastInfo ViewCast(float globalAngle)

{

Vector3 dir = DirFromAngle(transform.rotation.y + globalAngle, true);

RaycastHit hit;

obstacleProximity =

Vector3.Distance(transform.position, transform.position

+ dir * config.viewRadius);

if (Physics.Raycast(transform.position, dir, out hit,

config.viewRadius, obstacleMask))

{

Debug.DrawLine(transform.position, hit.point, Color.blue);

Vector3 wp = new Vector3(hit.point.x, hit.point.y, hit.point.z);

commonGrid.GetComponent<Grid>().

UpdateGrid(wp, GetComponent<Unit>().id, false);

obstacleProximity = Vector3.Distance(transform.position, wp);

return new ViewCastInfo(true, hit.point, hit.distance, globalAngle);

}

else

{

Debug.DrawLine(transform.position, transform.position +

155

dir * config.viewRadius, Color.blue);

return new ViewCastInfo(false, transform.position +

dir * config.viewRadius, config.viewRadius, globalAngle);

}

}

ViewCastInfo ViewCastBeam(float globalAngle)

{

Vector3 dir = DirFromAngleBeam(transform.rotation.y + globalAngle, true);

RaycastHit hit;

obstacleProximity =

Vector3.Distance(transform.position, transform.position +

dir * config.viewRadius);

if (Physics.Raycast(transform.position, dir, out hit,

config.viewRadius, obstacleMask))

{

Debug.DrawLine(transform.position, hit.point, Color.red);

Vector3 wp = new Vector3(hit.point.x, hit.point.y, hit.point.z);

obstacleProximity = Vector3.Distance(transform.position, wp);

return new ViewCastInfo(true, hit.point, hit.distance, globalAngle);

}

156

else

{

Debug.DrawLine(transform.position, transform.position +

dir * config.viewRadius, Color.red);

return new ViewCastInfo(false, transform.position +

dir * config.viewRadius, config.viewRadius, globalAngle);

}

}

public Vector3 DirFromAngle(float angleInDegrees, bool angleIsGlobal)

{

if(!angleIsGlobal)

{

angleInDegrees += transform.eulerAngles.y;

}

return new Vector3(Mathf.Sin(angleInDegrees * Mathf.Deg2Rad),

0, Mathf.Cos(angleInDegrees * Mathf.Deg2Rad));

}

public Vector3 DirFromAngleBeam(float angleInDegrees, bool angleIsGlobal)

{

if (!angleIsGlobal)

157

{

angleInDegrees += transform.eulerAngles.y;

}

return new Vector3(Mathf.Sin(angleInDegrees * Mathf.Deg2Rad),

Mathf.Cos(angle_ver * Mathf.Deg2Rad),

Mathf.Cos(angleInDegrees * Mathf.Deg2Rad));

}

public struct ViewCastInfo

{

public bool hit;

public Vector3 point;

public float dst;

public float angle;

public ViewCastInfo(bool _hit, Vector3 _point, float _dst, float _angle)

{

hit = _hit;

point = _point;

dst = _dst;

angle = _angle;

}

158

}

void DrawFieldOfView()

{

int stepCount = Mathf.RoundToInt(config.viewAngle

* config.meshResolution);

float stepAngleSize = config.viewAngle / stepCount;

List<Vector3> viewPoints = new List<Vector3>();

for (int i = 0; i <= stepCount; i++)

{

float angle = transform.eulerAngles.y - config.viewAngle / 2 + stepAngleSize * i;

ViewCastInfo newViewCast = ViewCast(angle);

viewPoints.Add(newViewCast.point);

}

}

void DrawFieldOfViewBeam()

{

int stepCount = Mathf.RoundToInt(config.viewAngle * config.meshResolution);

int stepCount_ver = Mathf.RoundToInt(config.vertAngle * config.meshResolution);

float stepAngleSize = config.viewAngle / stepCount;

159

float stepAngleSize_ver = config.vertAngle / stepCount_ver;

List<Vector3> viewPoints = new List<Vector3>();

//string proximities = "";

string frame = "";

frame +="\t{" ;//+ System.Environment.NewLine;

frame += "\t\"time\":"+ "\"" +

DateTime.Now.ToString("hh.mm.ss.ffffff").ToString()+ "\",";// +

System.Environment.NewLine;

frame += "\t\"position\":["

+ transform.position.x.ToString("G4") + ","

+ transform.position.y.ToString("G4") + ","

+ transform.position.z.ToString("G4")

+ "],";

//+ System.Environment.NewLine;

frame += "\t\"roation\":["

+ transform.rotation.x.ToString("G4")+","

+ transform.rotation.y.ToString("G4") + ","

+ transform.rotation.z.ToString("G4")

+ "]," ;

//+ System.Environment.NewLine;

frame +="\t\"points\":[";//+ System.Environment.NewLine;

160

for (int i = 0; i <= stepCount; i++)

{

for (int j = 0; j <= stepCount_ver; j++)

{

float angle = transform.eulerAngles.y - config.viewAngle / 2

+ stepAngleSize * i;

angle_ver = -transform.eulerAngles.x + vertDispAngle -

config.vertAngle / 2 + stepAngleSize_ver * j;

ViewCastInfo newViewCast = ViewCastBeam(angle);

viewPoints.Add(newViewCast.point);

if(obstacleProximity < (config.viewRadius-0.1)){

frame += "\t\t["

+ newViewCast.point.x.ToString("G4") + ","

+ newViewCast.point.y.ToString("G4") + ","

+ newViewCast.point.z.ToString("G4") + ","

+ obstacleProximity.ToString("G4")

+ "],";// + System.Environment.NewLine;

}

}

}

161

//frame = frame.Remove(frame.Length - 3) + System.Environment.NewLine;

frame += "\t\t]";// + System.Environment.NewLine;

frame += "\t}" + System.Environment.NewLine;

frames += frame;

/*

proximities = proximities.Remove(proximities.Length - 1) +

System.Environment.NewLine;

Store proximities in seperate file

System.IO.File.AppendAllText(config.path

+ config.mode

+ "\\R" + GetComponent<Unit>().id.ToString()

+ "\\proximities\\"

+ "\\PE" + config.experiment.ToString() + ".txt", proximities);

System.IO.File.AppendAllText(config.path

+ config.mode

+ "\\R" + GetComponent<Unit>().id.ToString()

+ "\\frames\\"

+ "\\FE" + config.experiment.ToString() + ".txt", frame);

*/

}

162

public struct EdgeInfo

{

public Vector3 pointA;

public Vector3 pointB;

public EdgeInfo(Vector3 _pointA, Vector3 _pointB)

{

pointA = _pointA;

pointB = _pointB;

}

}

}

using UnityEngine;

using System.Collections.Generic;

using System.Diagnostics;

using System;

public class Pathfinding : MonoBehaviour {

163

Grid grid;

float displacementY = 0.9f;

void Awake() {

grid = GetComponent<Grid>();

}

public void FindPath(PathRequest request, Action<PathResult> callback) {

Stopwatch sw = new Stopwatch();

sw.Start();

Vector3[] waypoints = new Vector3[0];

bool pathSuccess = false;

Node startNode = grid.NodeFromWorldPoint(request.pathStart);

Node targetNode = grid.NodeFromWorldPoint(request.pathEnd);

startNode.parent = startNode;

if (startNode.walkable && targetNode.walkable) {

Edge<Node> openSet = new Edge<Node>(grid.MaxSize);

HashSet<Node> closedSet = new HashSet<Node>();

164

openSet.Add(startNode);

while (openSet.Count > 0) {

Node currentNode = openSet.RemoveFirst();

closedSet.Add(currentNode);

if (currentNode == targetNode) {

sw.Stop();

//print ("Path found: " + sw.ElapsedMilliseconds + " ms");

pathSuccess = true;

break;

}

foreach (Node neighbour in grid.GetNeighbours(currentNode)) {

if (!neighbour.walkable || closedSet.Contains(neighbour)) {

continue;

}

int newCToN = currentNode.gCost + GetDistance(currentNode, neighbour)

+ neighbour.movementPenalty;

if (newCToN < neighbour.gCost ||

!openSet.Contains(neighbour)) {

165

neighbour.gCost = newCToN;

neighbour.hCost = GetDistance(neighbour, targetNode);

neighbour.parent = currentNode;

if (!openSet.Contains(neighbour))

openSet.Add(neighbour);

else

openSet.UpdateItem(neighbour);

}

}

}

}

if (pathSuccess) {

waypoints = RetracePath(startNode,targetNode);

pathSuccess = waypoints.Length > 0;

}

callback (new PathResult (waypoints, pathSuccess, request.callback));

}

Vector3[] RetracePath(Node startNode, Node endNode) {

166

List<Node> path = new List<Node>();

Node currentNode = endNode;

while (currentNode != startNode) {

path.Add(currentNode);

currentNode = currentNode.parent;

}

Vector3[] waypoints;

if (config.fullNodeList)

{

waypoints = OriginalPath(path);

}

else

{

waypoints = SimplifyPath(path);

}

Array.Reverse(waypoints);

return waypoints;

}

167

Vector3[] SimplifyPath(List<Node> path)

{

List<Vector3> waypoints = new List<Vector3>();

Vector2 directionOld = Vector2.zero;

for (int i = 1; i < path.Count; i ++) {

Vector2 directionNew =

new Vector2(path[i-1].gridX - path[i].gridX,

path[i-1].gridY - path[i].gridY);

if (directionNew != directionOld) {

waypoints.Add(new Vector3(path[i].worldPosition.x,

displacementY, path[i].worldPosition.z));

}

directionOld = directionNew;

}

return waypoints.ToArray();

}

Vector3[] OriginalPath(List<Node> path)

{

List<Vector3> waypoints = new List<Vector3>();

168

Vector2 directionOld = Vector2.zero;

for (int i = 1; i < path.Count; i++)

{

waypoints.Add(new Vector3(path[i].worldPosition.x, displacementY,

path[i].worldPosition.z));

}

return waypoints.ToArray();

}

int GetDistance(Node nodeA, Node nodeB) {

int dstX = Mathf.Abs(nodeA.gridX - nodeB.gridX);

int dstY = Mathf.Abs(nodeA.gridY - nodeB.gridY);

if (dstX > dstY)

return 14*dstY + 10* (dstX-dstY);

return 14*dstX + 10 * (dstY-dstX);

}

}

169

using UnityEngine;

using System.Collections.Generic;

using System;

using System.Threading;

public class PathRequestManager : MonoBehaviour {

Queue<PathResult> results = new Queue<PathResult>();

static PathRequestManager instance;

Pathfinding pathfinding;

void Awake() {

instance = this;

pathfinding = GetComponent<Pathfinding>();

}

void Update() {

if (results.Count > 0) {

170

int itemsInQueue = results.Count;

lock (results) {

for (int i = 0; i < itemsInQueue; i++) {

PathResult result = results.Dequeue ();

result.callback (result.path, result.success);

}

}

}

}

public void RequestPath(PathRequest request) {

ThreadStart threadStart = delegate {

instance.pathfinding.FindPath (request, instance.FinishedProcessingPath);

};

threadStart.Invoke();

}

public void FinishedProcessingPath(PathResult result) {

lock (results) {

results.Enqueue (result);

}

}

171

}

public struct PathResult {

public Vector3[] path;

public bool success;

public Action<Vector3[], bool> callback;

public PathResult (Vector3[] path, bool success, Action<Vector3[], bool> callback)

{

this.path = path;

this.success = success;

this.callback = callback;

}

}

public struct PathRequest {

public Vector3 pathStart;

public Vector3 pathEnd;

public Action<Vector3[], bool> callback;

172

public PathRequest(Vector3 _start, Vector3 _end, Action<Vector3[], bool> _callback) {

pathStart = _start;

pathEnd = _end;

callback = _callback;

}

}

using UnityEngine;

public class Path {

public readonly Vector3[] lookPoints;

public readonly Line[] turnBoundaries;

public readonly int finishLineIndex;

public readonly int slowDownIndex;

public Path(Vector3[] waypoints, Vector3 startPos,

turnDst, float stoppingDst) {

lookPoints = waypoints;

turnBoundaries = new Line[lookPoints.Length];

173

finishLineIndex = turnBoundaries.Length - 1;

Vector2 previousPoint = V3ToV2 (startPos);

for (int i = 0; i < lookPoints.Length; i++) {

Vector2 currentPoint = V3ToV2 (lookPoints [i]);

Vector2 dirToCurrentPoint = (currentPoint - previousPoint).normalized;

Vector2 turnBoundaryPoint =

(i == finishLineIndex)?currentPoint : currentPoint -

dirToCurrentPoint * turnDst;

turnBoundaries [i] =

new Line (turnBoundaryPoint, previousPoint -

dirToCurrentPoint * turnDst);

previousPoint = turnBoundaryPoint;

}

float dstFromEndPoint = 0;

for (int i = lookPoints.Length - 1; i > 0; i--) {

dstFromEndPoint += Vector3.Distance (lookPoints [i], lookPoints [i - 1]);

if (dstFromEndPoint > stoppingDst) {

slowDownIndex = i;

break;

}

174

}

}

Vector2 V3ToV2(Vector3 v3) {

return new Vector2 (v3.x, v3.z);

}

public void DrawWithGizmos(Vector3 pos) {

Gizmos.color = Color.black;

for (int i = 0; i < lookPoints.Length; i++)

{

Gizmos.color = Color.black;

Gizmos.DrawCube(lookPoints[i], Vector3.one);

if (i == 0)

{

Gizmos.DrawLine(pos, lookPoints[i]);

}

else

{

Gizmos.DrawLine(lookPoints[i - 1], lookPoints[i]);

175

}

}

Gizmos.color = Color.white;

foreach (Line l in turnBoundaries) {

l.DrawWithGizmos (10);

}

}

}

using UnityEngine;

public class Node : IEdgeItem<Node> {

public bool walkable;

public Vector3 worldPosition;

public int gridX;

public int gridY;

public int movementPenalty;

176

public int gCost;

public int hCost;

public Node parent;

int edgeIndex;

public Node(bool _walkable, Vector3 _worldPos,

int _gridX, int _gridY, int _penalty) {

walkable = _walkable;

worldPosition = _worldPos;

gridX = _gridX;

gridY = _gridY;

movementPenalty = _penalty;

}

public int fCost {

get {

return gCost + hCost;

}

}

public int EdgeIndex {

get {

177

return edgeIndex;

}

set {

edgeIndex = value;

}

}

public int CompareTo(Node nodeToCompare) {

int compare = fCost.CompareTo(nodeToCompare.fCost);

if (compare == 0) {

compare = hCost.CompareTo(nodeToCompare.hCost);

}

return -compare;

}

}

static class config

{

//GENERAL

public static string path = "E:\\experiments\\mode_";

public static string scene = "Scene_6";

public static string mode = "Group";

178

public static int experiments = 1;

public static int experiment = 1;

public static int activeRobotID = 0;

//UNIT

public static bool speedControll = false;

public static bool fullNodeList = false;

public static float speedMax = 7;

public static float speedMed = 4;

public static float speedLow = 7;

public static float turnSpeed = 4;

public static float turnDst = 1;

public static float stoppingDst = 5;

//TVS

public static float viewRadius = 20;

public static float viewAngle = 90;

public static float vertAngle = 20;

public static float meshResolution = 0.3f;

179

public static float nodeRadius = 0.7f;

}

using UnityEngine;

using UnityEngine.SceneManagement;

class Monitor : MonoBehaviour

{

public GameObject[] robots;

public GameObject grid;

void Start()

{

robots = GameObject.FindGameObjectsWithTag("robot");

System.IO.Directory.CreateDirectory(config.path +

config.mode + "\\common" + "\\maps\\");

System.IO.Directory.CreateDirectory(config.path +

config.mode + "\\R1" + "\\maps\\");

System.IO.Directory.CreateDirectory(config.path +

180

config.mode + "\\R2" + "\\maps\\");

System.IO.Directory.CreateDirectory(config.path +

config.mode + "\\R3" + "\\maps\\");

if (config.mode.Equals("Group")|| config.mode.Equals("Preknown"))

{

InvokeRepeating("MainTargetReachedForGroup", 1.0f, 1f);

}

if (config.mode.Equals("Single"))

{

foreach (GameObject robot in robots)

{

robot.SetActive(false);

}

//Debug.Log("Setting active robot to "+ config.activeRobotID.ToString());

robots[config.activeRobotID].SetActive(true);

InvokeRepeating("MainTargetReachedForOne", 1.0f, 1f);

}

if (config.mode.Equals("Preknown"))

181

{

}

}

void MainTargetReachedForGroup()

{

int reload = 0;

foreach (GameObject robot in robots)

{

if (robot.GetComponent<Unit>().reached) reload++;

}

//if (reload == robots.Length && config.experiment <= config.experiments)

if (reload == robots.Length)

{

string array = "";

string array_1 = "";

string array_2 = "";

182

string array_3 = "";

for (int i = 0; i < grid.GetComponent<Grid>().grid.GetLength(0); i++)

{

for (int j = 0; j < grid.GetComponent<Grid>().grid.GetLength(1); j++)

{

array += (grid.GetComponent<Grid>().grid[i, j].walkable ? "1" : "0") + " ";

array_1 += (grid.GetComponent<Grid>().grid_1[i, j].walkable ? "1" : "0") + " ";

array_2 += (grid.GetComponent<Grid>().grid_2[i, j].walkable ? "1" : "0") + " ";

array_3 += (grid.GetComponent<Grid>().grid_3[i, j].walkable ? "1" : "0") + " ";

}

array += System.Environment.NewLine;

array_1 += System.Environment.NewLine;

array_2 += System.Environment.NewLine;

array_3 += System.Environment.NewLine;

}

string filename = "M" + config.experiment + ".txt";

System.IO.File.WriteAllText(config.path + config.mode +

"\\common" + "\\maps\\" + filename, array);

183

System.IO.File.WriteAllText(config.path + config.mode +

"\\R1" + "\\maps\\" + filename, array_1);

System.IO.File.WriteAllText(config.path + config.mode +

"\\R2" + "\\maps\\" + filename, array_2);

System.IO.File.WriteAllText(config.path + config.mode +

"\\R3" + "\\maps\\" + filename, array_3);

//config.experiment++;

//SceneManager.LoadScene(config.scene);

}

/*

if (config.experiment>config.experiments)

{

SceneManager.LoadScene("Menu");

}

*/

}

void MainTargetReachedForOne()

{

foreach (GameObject robot in robots)

184

{

if (robot.activeInHierarchy)

{

if (robot.GetComponent<Unit>().reached && config.experiment <= config.experiments)

{

string array = "";

for (int i = 0; i < grid.GetComponent<Grid>().grid.GetLength(0); i++)

{

for (int j = 0; j < grid.GetComponent<Grid>().grid.GetLength(1); j++)

{

array += (grid.GetComponent<Grid>().grid[i, j].walkable ? "1" : "0") + " ";

}

array += System.Environment.NewLine;

}

string filename = "M" + config.experiment + ".txt";

System.IO.File.WriteAllText(config.path + config.mode

+ "\\R"+ (config.activeRobotID +1).ToString() + "\\maps\\" + filename, array);

config.experiment++;

185

SceneManager.LoadScene(config.scene);

}

if (config.experiment > config.experiments)

{

config.experiment = 1;

config.activeRobotID++;

if (config.activeRobotID > 2)

{

SceneManager.LoadScene("Menu");

}

}

}

}

}

}

using UnityEngine;

186

public struct Line {

const float verticalLineGradient = 1e5f;

float gradient;

float y_intercept;

Vector2 pointOnLine_1;

Vector2 pointOnLine_2;

float gradientPerpendicular;

bool approachSide;

public Line(Vector2 pointOnLine, Vector2 pointPerpendicularToLine) {

float dx = pointOnLine.x - pointPerpendicularToLine.x;

float dy = pointOnLine.y - pointPerpendicularToLine.y;

if (dx == 0) {

gradientPerpendicular = verticalLineGradient;

} else {

gradientPerpendicular = dy / dx;

187

}

if (gradientPerpendicular == 0) {

gradient = verticalLineGradient;

} else {

gradient = -1 / gradientPerpendicular;

}

y_intercept = pointOnLine.y - gradient * pointOnLine.x;

pointOnLine_1 = pointOnLine;

pointOnLine_2 = pointOnLine + new Vector2 (1, gradient);

approachSide = false;

approachSide = GetSide (pointPerpendicularToLine);

}

bool GetSide(Vector2 p) {

return (p.x - pointOnLine_1.x) *

(pointOnLine_2.y - pointOnLine_1.y) > (p.y - pointOnLine_1.y) *

(pointOnLine_2.x - pointOnLine_1.x);

}

188

public bool HasCrossedLine(Vector2 p) {

return GetSide (p) != approachSide;

}

public float DistanceFromPoint(Vector2 p) {

float yInterceptPerpendicular = p.y - gradientPerpendicular * p.x;

float intersectX = (yInterceptPerpendicular - y_intercept) /

(gradient - gradientPerpendicular);

float intersectY = gradient * intersectX + y_intercept;

return Vector2.Distance (p, new Vector2 (intersectX, intersectY));

}

public void DrawWithGizmos(float length) {

Vector3 lineDir = new Vector3 (1, 0, gradient).normalized;

Vector3 lineCentre = new Vector3 (pointOnLine_1.x,

0, pointOnLine_1.y) + Vector3.up;

Gizmos.DrawLine (lineCentre - lineDir *

length / 2f, lineCentre + lineDir * length / 2f);

}

}

189

using UnityEngine;

using System.Collections.Generic;

public class Grid : MonoBehaviour {

public bool displayGridGizmos;

public LayerMask unwalkableMask;

public Vector2 gridWorldSize;

float nodeRadius;

int penalty = 100000;

LayerMask walkableMask;

public Node[,] grid { get; set; }

public Node[,] grid_1 { get; set; }

public Node[,] grid_2 { get; set; }

public Node[,] grid_3 { get; set; }

public Node[,] grid_nsz { get; set; }

float nodeDiameter;

int gridSizeX, gridSizeY;

190

void Awake()

{

nodeRadius = config.nodeRadius;

nodeDiameter = nodeRadius*2;

gridSizeX = Mathf.RoundToInt(gridWorldSize.x/nodeDiameter);

gridSizeY = Mathf.RoundToInt(gridWorldSize.y/nodeDiameter);

if (config.mode.Equals("Preknown"))

{

CreateMappedGrid();

}

else

{

CreateGrid();

}

}

public int MaxSize

{

get

191

{

return gridSizeX * gridSizeY;

}

}

void CreateGrid()

{

grid = new Node[gridSizeX,gridSizeY];

grid_1 = new Node[gridSizeX, gridSizeY];

grid_2 = new Node[gridSizeX, gridSizeY];

grid_3 = new Node[gridSizeX, gridSizeY];

grid_nsz = new Node[gridSizeX, gridSizeY];

Vector3 worldBottomLeft = transform.position -

Vector3.right * gridWorldSize.x/2 - Vector3.forward * gridWorldSize.y/2;

for (int x = 0; x < gridSizeX; x ++) {

for (int y = 0; y < gridSizeY; y ++) {

192

int movementPenalty = 0;

Vector3 worldPoint = worldBottomLeft + Vector3.right *

(x * nodeDiameter + nodeRadius) + Vector3.forward *

(y * nodeDiameter + nodeRadius);

bool walkable = true;

grid[x, y] = new Node(walkable,worldPoint, x,y, movementPenalty);

grid_1[x, y] = new Node(walkable, worldPoint, x, y, movementPenalty);

grid_2[x, y] = new Node(walkable, worldPoint, x, y, movementPenalty);

grid_3[x, y] = new Node(walkable, worldPoint, x, y, movementPenalty);

grid_nsz[x, y] = new Node(walkable, worldPoint, x, y, movementPenalty);

}

}

}

void CreateMappedGrid()

{

grid = new Node[gridSizeX, gridSizeY];

grid_1 = new Node[gridSizeX, gridSizeY];

193

grid_2 = new Node[gridSizeX, gridSizeY];

grid_3 = new Node[gridSizeX, gridSizeY];

grid_nsz = new Node[gridSizeX, gridSizeY];

Vector3 worldBottomLeft = transform.position -

Vector3.right * gridWorldSize.x / 2 - Vector3.forward * gridWorldSize.y / 2;

for (int x = 0; x < gridSizeX; x++)

{

for (int y = 0; y < gridSizeY; y++)

{

Vector3 worldPoint = worldBottomLeft +

Vector3.right * (x * nodeDiameter + nodeRadius) + Vector3.forward

* (y * nodeDiameter + nodeRadius);

bool walkable = !(Physics.CheckSphere(worldPoint,

nodeRadius, unwalkableMask));

int movementPenalty = 0;

Ray ray = new Ray(worldPoint + Vector3.up * 50, Vector3.down);

194

if (!walkable)

{

movementPenalty += penalty;

}

grid[x, y] = new Node(walkable, worldPoint, x, y, movementPenalty);

grid_1[x, y] = new Node(walkable, worldPoint, x, y, movementPenalty);

grid_2[x, y] = new Node(walkable, worldPoint, x, y, movementPenalty);

grid_3[x, y] = new Node(walkable, worldPoint, x, y, movementPenalty);

grid_nsz[x, y] = new Node(walkable, worldPoint, x, y, movementPenalty);

}

}

}

public void UpdateGrid(Vector3 obstacle_point, int id, bool walkable)

{

int x, y;

int movementPenalty = 0;

x = Mathf.RoundToInt((obstacle_point.x + gridWorldSize.x / 2) /

195

(nodeDiameter) - 0.5f);

y = Mathf.RoundToInt((obstacle_point.z + gridWorldSize.y / 2) /

(nodeDiameter) - 0.5f);

Vector3 worldBottomLeft = transform.position -

Vector3.right * gridWorldSize.x / 2 - Vector3.forward * gridWorldSize.y / 2;

Vector3 worldPoint = worldBottomLeft +

Vector3.right * (x * nodeDiameter + nodeRadius)

+ Vector3.forward * (y * nodeDiameter + nodeRadius);

grid[x, y] = new Node(false, worldPoint, x, y, penalty);

grid_nsz[x, y] = new Node(false, worldPoint, x, y, penalty);

if (id == 1)

{

grid_1[x, y] = new Node(false, worldPoint, x, y, penalty);

}

if (id == 2)

{

grid_2[x, y] = new Node(false, worldPoint, x, y, penalty);

}

196

if (id == 3)

{

grid_3[x, y] = new Node(false, worldPoint, x, y, penalty);

}

try

{

for (int i = x - 1; i <= x + 1; i++)

for (int j = y - 1; j <= y + 1; j++)

grid[i, j] = new Node(walkable, worldPoint, i, j, movementPenalty);

}

catch

{

}

}

public List<Node> GetNeighbours(Node node) {

List<Node> neighbours = new List<Node>();

for (int x = -1; x <= 1; x++) {

197

for (int y = -1; y <= 1; y++) {

if (x == 0 && y == 0)

continue;

int checkX = node.gridX + x;

int checkY = node.gridY + y;

if (checkX >= 0 && checkX < gridSizeX &&

checkY >= 0 && checkY < gridSizeY) {

neighbours.Add(grid[checkX,checkY]);

}

}

}

return neighbours;

}

public Node NodeFromWorldPoint(Vector3 worldPosition) {

float percentX = (worldPosition.x + gridWorldSize.x/2) / gridWorldSize.x;

float percentY = (worldPosition.z + gridWorldSize.y/2) / gridWorldSize.y;

percentX = Mathf.Clamp01(percentX);

percentY = Mathf.Clamp01(percentY);

198

int x = Mathf.RoundToInt((gridSizeX-1) * percentX);

int y = Mathf.RoundToInt((gridSizeY-1) * percentY);

return grid[x,y];

}

void OnDrawGizmos() {

Vector3 gridCubeSize = new Vector3((nodeDiameter - .1f),

0.1f, (nodeDiameter - .1f));

Gizmos.DrawWireCube(transform.position,

new Vector3(gridWorldSize.x, 1, gridWorldSize.y));

if (grid != null && displayGridGizmos)

{

foreach (Node n in grid)

{

Gizmos.color = (n.walkable) ? Color.white : Color.red;

Gizmos.DrawCube(n.worldPosition, gridCubeSize);

}

}

}

}

199

using System;

public class Edge<T> where T : IEdgeItem<T> {

T[] items;

int currentItemCount;

public Edge(int maxEdgeSize) {

items = new T[maxEdgeSize];

}

public void Add(T item) {

item.EdgeIndex = currentItemCount;

items[currentItemCount] = item;

SortUp(item);

currentItemCount++;

}

public T RemoveFirst() {

T firstItem = items[0];

currentItemCount--;

items[0] = items[currentItemCount];

200

items[0].EdgeIndex = 0;

SortDown(items[0]);

return firstItem;

}

public void UpdateItem(T item) {

SortUp(item);

}

public int Count {

get {

return currentItemCount;

}

}

public bool Contains(T item) {

return Equals(items[item.EdgeIndex], item);

}

void SortDown(T item) {

while (true) {

int childIndexLeft = item.EdgeIndex * 2 + 1;

201

int childIndexRight = item.EdgeIndex * 2 + 2;

int swapIndex = 0;

if (childIndexLeft < currentItemCount) {

swapIndex = childIndexLeft;

if (childIndexRight < currentItemCount) {

if (items[childIndexLeft].CompareTo(items[childIndexRight]) < 0) {

swapIndex = childIndexRight;

}

}

if (item.CompareTo(items[swapIndex]) < 0) {

Swap (item,items[swapIndex]);

}

else {

return;

}

}

else {

return;

202

}

}

}

void SortUp(T item) {

int parentIndex = (item.EdgeIndex-1)/2;

while (true) {

T parentItem = items[parentIndex];

if (item.CompareTo(parentItem) > 0) {

Swap (item,parentItem);

}

else {

break;

}

parentIndex = (item.EdgeIndex-1)/2;

}

}

void Swap(T itemA, T itemB) {

203

items[itemA.EdgeIndex] = itemB;

items[itemB.EdgeIndex] = itemA;

int itemAIndex = itemA.EdgeIndex;

itemA.EdgeIndex = itemB.EdgeIndex;

itemB.EdgeIndex = itemAIndex;

}

}

public interface IEdgeItem<T> : IComparable<T> {

int EdgeIndex {

get;

set;

}

}

using UnityEngine;

using UnityEngine.SceneManagement;

using UnityEngine.UI;

204

public class ButtonManager : MonoBehaviour {

//GENERAL

public InputField path;

public InputField experiments;

public Dropdown scene;

public Dropdown mode;

//UNIT

public Toggle speedControll;

public Toggle fullNodeList;

public InputField speedMax;

public InputField speedMed;

public InputField speedLow;

public InputField turnSpeed;

public InputField turnDst;

//TVS

205

public InputField viewRadius;

public InputField viewAngle;

public InputField vertAngle;

public InputField meshResolution;

public InputField nodeRadius;

public void Start()

{

speedControll.isOn = config.speedControll;

fullNodeList.isOn = config.fullNodeList;

path.text = config.path.ToString();

experiments.text = config.experiments.ToString();

speedMax.text = config.speedMax.ToString();

speedMed.text = config.speedMed.ToString();

speedLow.text = config.speedLow.ToString();

turnSpeed.text = config.turnSpeed.ToString();

turnDst.text = config.turnDst.ToString();

viewRadius.text = config.viewRadius.ToString();

206

viewAngle.text = config.viewAngle.ToString();

vertAngle.text = config.vertAngle.ToString();

meshResolution.text = config.meshResolution.ToString();

nodeRadius.text = config.nodeRadius.ToString();

}

public void SceneLoadButton()

{

config.scene = scene.options[scene.value].text;

config.mode = mode.options[mode.value].text;

config.speedControll = speedControll.isOn;

config.fullNodeList = fullNodeList.isOn;

config.path = path.text;

int.TryParse(experiments.text, out config.experiments);

float.TryParse(speedMax.text, out config.speedMax);

float.TryParse(speedMed.text, out config.speedMed);

float.TryParse(speedLow.text, out config.speedLow);

207

float.TryParse(turnSpeed.text, out config.turnSpeed);

float.TryParse(turnDst.text, out config.turnDst);

float.TryParse(viewRadius.text, out config.viewRadius);

float.TryParse(viewAngle.text, out config.viewAngle);

float.TryParse(vertAngle.text, out config.vertAngle);

float.TryParse(meshResolution.text, out config.meshResolution);

float.TryParse(nodeRadius.text, out config.nodeRadius);

SceneManager.LoadScene(config.scene);

}

}

208

Appendix B

namespace NetworkModeling.Models

{

class edge

{

public int id { get; set; }

public int s_id { get; set; }

public int d_id { get; set; }

public int s_x { get; set; }

public int s_y { get; set; }

public int d_x { get; set; }

public int d_y { get; set; }

public double w { get; set; }

209

public bool marked { get; set; }

}

}

namespace NetworkModeling.Models

{

class node

{

public node() { }

public node(int x, int y)

{

this.x = x;

this.y = y;

}

public node(int id, int x, int y)

{

this.id = id;

this.x = x;

this.y = y;

}

public int id { get; set; }

210

public int x { get; set; }

public int y { get; set; }

public bool marked { get; set; }

}

}

namespace NetworkModeling.Models

{

class Subset

{

public int Parent;

public int Rank;

}

}

using System;

using System.Collections.Generic;

using System.Linq;

namespace NetworkModeling.Models

211

{

class Graph

{

public edge[] _edges;

public edge[] _kedges;

List<node> _nodes = new List<node>();

public IEnumerable<node> nodes { get { return _nodes; } }

public edge[] edges { get { return _edges; } }

public edge[] kedges { get { return _kedges; } }

public void addNode(node argValue)

{

_nodes.Add(argValue);

}

public void addArc(edge argValue,int id)

{

_edges[id] = new edge();

_edges[id].id = id;

_edges[id].marked = false;

_edges[id].s_id = argValue.s_id;

_edges[id].d_id = argValue.d_id;

_edges[id].s_x = argValue.s_x;

212

_edges[id].d_x = argValue.d_x;

_edges[id].s_y = argValue.s_y;

_edges[id].d_y = argValue.d_y;

_edges[id].w = argValue.w;

}

public void clearGraph()

{

_edges = null;

_nodes = new List<node>();

}

public void genGraph(int vc)

{

_edges = new edge[Convert.ToInt32((vc * (vc - 1)) / 2)];

Random rnd = new Random();

for (int i = 0; i < vc; i++)

{

node n = new node(i, rnd.Next(10, 290), rnd.Next(10, 290));

213

addNode(n);

}

int id = 0;

for (int i = 0; i < vc - 1; i++)

{

node ns = nodes.ElementAt(i);

for (int j = i + 1; j < vc; j++)

{

node dn = nodes.ElementAt(j);

edge a = new edge();

a.id = id;

a.s_id = ns.id;

a.s_x = ns.x + 5;

a.s_y = ns.y + 5;

a.d_id = dn.id;

a.d_x = dn.x + 5;

a.d_y = dn.y + 5;

a.w = Math.Round(Math.Sqrt((a.s_x - a.d_x) *

214

(a.s_x - a.d_x) + (a.s_y - a.d_y) * (a.s_y - a.d_y)));

addArc(a, id);

id++;

}

}

}

private static int Search(Subset[] subs, int i)

{

if (subs[i].Parent != i)

subs[i].Parent = Search(subs, subs[i].Parent);

return subs[i].Parent;

}

private static void Union(Subset[] subs, int x, int y)

{

int xR = Search(subs, x);

int yR = Search(subs, y);

if (subs[xR].Rank < subs[yR].Rank)

215

subs[xR].Parent = yR;

else if (subs[xR].Rank > subs[yR].Rank)

subs[yR].Parent = xR;

else

{

subs[yR].Parent = xR;

++subs[xR].Rank;

}

}

public void Kruskal()

{

int vc = _nodes.Count;

edge[] result = new edge[vc];

int i = 0;

int e = 0;

Subset[] subs = new Subset[vc];

for (int j = 0; j < vc; j++)

{

subs[j] = new Subset();

216

}

for (int j = 0; j < vc; j++)

{

result[j] = new edge();

}

Array.Sort(_edges, delegate (edge a, edge b)

{

return a.w.CompareTo(b.w);

});

for (int v = 0; v < vc; ++v)

{

subs[v].Parent = v;

subs[v].Rank = 0;

}

while (e < vc - 1)

{

edge nextEdge = _edges[i++];

int x = Search(subs, nextEdge.s_id);

217

int y = Search(subs, nextEdge.d_id);

if (x != y)

{

result[e++] = nextEdge;

Union(subs, x, y);

}

}

//_kedges = result;

int ii = 0;

List<edge> _nkedges=new List<edge>();

foreach (edge ed in result)

{

if (ed.d_id != ed.s_id)

{

_nkedges.Add(ed);

edge b = new edge();

b.id = ed.id;

b.d_id = ed.s_id;

218

b.s_id = ed.d_id;

b.d_x = ed.s_x;

b.d_y = ed.s_y;

b.s_y = ed.d_y;

b.s_x = ed.d_x;

b.marked = ed.marked;

b.w = ed.w;

_nkedges.Add(b);

}

}

_kedges = _nkedges.ToArray();

}

private static int MinKey(int[] key, bool[] set, int vc)

{

int min = int.MaxValue, minIndex = 0;

for (int v = 0; v < vc; ++v)

{

219

if (set[v] == false && key[v] < min)

{

min = key[v];

minIndex = v;

}

}

return minIndex;

}

}

}

using NetworkModeling.Models;

using System;

using System.Collections.Generic;

using System.Diagnostics;

using System.Drawing;

using System.Drawing.Imaging;

using System.Linq;

using System.Security.Permissions;

220

using System.Threading;

using System.Windows.Forms;

namespace NetworkModeling

{

public partial class frmMain : Form

{

static Graph gr = new Graph();

edge a = new edge();

node n = new node();

double[] nd;

double[] ndf;

int nv;

static double[][] dist;

int mni;

SolidBrush sb = new SolidBrush(Color.Red);

SolidBrush br = new SolidBrush(Color.Blue);

SolidBrush bw = new SolidBrush(Color.Cyan);

221

SolidBrush bt0 = new SolidBrush(Color.Green);

SolidBrush bt1 = new SolidBrush(Color.Blue);

SolidBrush bt2 = new SolidBrush(Color.Cyan);

StringFormat sf = new StringFormat();

Pen p = new Pen(Color.Black);

int v=5;

private Thread netThread;

public frmMain()

{

InitializeComponent();

}

private void gengrBtn_Click(object sender, EventArgs e)

{

gr.clearGraph();

gr.genGraph(Convert.ToInt32(netsizeNUD.Value));

printData();

stonePanel.Invalidate();

222

}

private void panel1_Paint(object sender, PaintEventArgs e)

{

Graphics g = stonePanel.CreateGraphics();

if(gr.edges!=null)

foreach (edge ac in gr.edges)

{

g.DrawLine(p, ac.s_x, ac.s_y, ac.d_x, ac.d_y);

sf.FormatFlags = StringFormatFlags.DirectionRightToLeft;

}

foreach (node nd in gr.nodes)

{

g.DrawEllipse(p, nd.x, nd.y, 10, 10);

g.FillEllipse(sb, nd.x, nd.y, 10, 10);

sf.FormatFlags = StringFormatFlags.DirectionRightToLeft;

g.DrawString(nd.id.ToString(), this.Font, br, nd.x, nd.y, sf);

}

}

private void printData()

{

223

nodesRTB.Clear();

edgesRTB.Clear();

graphRTB.Clear();

if(gr.edges!=null)

foreach (edge ac in gr.edges)

{

string st =

String.Format("{0}: {1}; {2}; w:{3}",

ac.id, ac.s_id, ac.d_id, ac.w);

edgesRTB.AppendText(st + Environment.NewLine);

}

if (gr.kedges != null)

foreach (edge ac in gr.kedges)

{

string st = String

.Format("{0}: {1}; {2}; w:{3}", ac.id, ac.s_id

, ac.d_id, ac.w);

graphRTB.AppendText(st + Environment.NewLine);

}

224

foreach (node nd in gr.nodes)

{

string st = String.Format("{0}: {1}; {2}",nd.id,nd.x,nd.y);

nodesRTB.AppendText(st + Environment.NewLine);

}

}

private void simpgrBtn_Click(object sender, EventArgs e)

{

sttwoPanel.Controls.Clear();

sttwoPanel.Invalidate();

gr.Kruskal();

printData();

sttwoPanel.Invalidate();

}

private void panel2_Paint(object sender, PaintEventArgs e)

{

Graphics g = sttwoPanel.CreateGraphics();

if(gr.kedges!=null)

foreach (edge ac in gr.kedges)

{

225

g.DrawLine(p, ac.s_x, ac.s_y, ac.d_x, ac.d_y);

sf.FormatFlags = StringFormatFlags.DirectionRightToLeft;

g.DrawString(ac.w.ToString(),

this.Font, bw,

(ac.s_x + ac.d_x) / 2, (ac.s_y + ac.d_y) / 2, sf);

}

foreach (node nd in gr.nodes)

{

g.DrawEllipse(p, nd.x, nd.y, 10, 10);

g.FillEllipse(sb, nd.x, nd.y, 10, 10);

sf.FormatFlags = StringFormatFlags.DirectionRightToLeft;

g.DrawString(nd.id.ToString(), this.Font, br, nd.x, nd.y, sf);

}

}

private void buildntwBtn_Click(object sender, EventArgs e)

{

///

dist = FloydWarshal(gr);

mni = Weights(dist);

stthreePanel.Controls.Clear();

226

stthreePanel.Invalidate();

stthreePanel.Invalidate();

///

}

private static double[][] FloydWarshal(Graph gr)

{

int v = gr.nodes.Count();

double[][] dist = new double[v][];

for (int i = 0; i < v; i++)

{

dist[i] = new double[v];

for (int j = 0; j < v; j++)

{

dist[i][j] = 16000;

}

}

for (int j = 0; j < v; j++)

{

dist[j][j] = 0;

}

227

foreach (edge ed in gr.kedges)

{

dist[ed.d_id][ed.s_id] = ed.w;

dist[ed.s_id][ed.d_id] = ed.w;

}

for (int k = 0; k < v; k++)

{

for (int i = 0; i < v; i++)

{

for (int j = 0; j < v; j++)

{

if (dist[i][j] > dist[i][k] + dist[k][j])

{

dist[i][j] = dist[i][k] + dist[k][j];

}

}

}

}

return dist;

}

private void button1_Click(object sender, EventArgs e)

228

{

v = Convert.ToInt32(netsizeNUD.Value);

///

gr.clearGraph();

gr.genGraph(v);

printData();

stonePanel.Invalidate();

///

///

sttwoPanel.Controls.Clear();

sttwoPanel.Invalidate();

gr.Kruskal();

printData();

sttwoPanel.Invalidate();

///

///

dist = FloydWarshal(gr);

mni = Weights(dist);

///

229

stthreePanel.Controls.Clear();

stthreePanel.Invalidate();

stthreePanel.Invalidate();

///

}

private static int Weights(double[][] dist)

{

int v = dist.Count();

double[] nodes = new double[v];

for (int i = 0; i < v; i++)

{

nodes[i] = dist[i].Average();

}

return nodes.ToList().IndexOf(nodes.Min());

}

private static double Weights2(double[][] dist)

{

int v = dist.Count();

double[] nodes = new double[v];

230

for (int i = 0; i < v; i++)

{

nodes[i] = dist[i].Average();

}

return nodes.Min();

}

bool search(List<int> nu, int nid)

{

foreach (int nui in nu)

{

if (nui == nid)

{

return true;

}

}

return false;

}

int childrenCount(Graph gr, int nid)

{

int child = 0;

foreach (edge ed in gr.kedges)

231

{

if (ed.s_id == nid) child++;

}

return child;

}

private void panel3_Paint(object sender, PaintEventArgs e)

{

if (gr.edges != null)

{

Graphics g = stthreePanel.CreateGraphics();

List<int> nu = new List<int>();

foreach (edge ac in gr.kedges)

{

g.DrawLine(p, ac.s_x, ac.s_y, ac.d_x , ac.d_y);

sf.FormatFlags = StringFormatFlags.DirectionRightToLeft;

g.DrawString(ac.w.ToString(),

this.Font, bw, (ac.s_x + ac.d_x) / 2, (ac.s_y + ac.d_y) / 2, sf);

}

foreach (node nd in gr.nodes)

232

{

if (childrenCount(gr, nd.id)==1)

{

g.DrawEllipse(p, nd.x, nd.y, 10, 10);

g.FillEllipse(bt2, nd.x, nd.y, 10, 10);

sf.FormatFlags = StringFormatFlags.DirectionRightToLeft;

g.DrawString(nd.id.ToString(), this.Font, br, nd.x, nd.y, sf);

}

if (childrenCount(gr, nd.id) > 1)

{

g.DrawEllipse(p, nd.x, nd.y, 10, 10);

g.FillEllipse(bt1, nd.x, nd.y, 10, 10);

sf.FormatFlags = StringFormatFlags.DirectionRightToLeft;

g.DrawString(nd.id.ToString(), this.Font, br, nd.x, nd.y, sf);

}

if (nd.id == mni)

{

g.DrawEllipse(p, nd.x, nd.y, 10, 10);

g.FillEllipse(bt0, nd.x, nd.y, 10, 10);

sf.FormatFlags = StringFormatFlags.DirectionRightToLeft;

g.DrawString(nd.id.ToString(), this.Font, br, nd.x, nd.y, sf);

}

233

}

}

}

void calcNetwork()

{

for (int i = 1; i < nv; i++)

{

double fmni = 0;

double fdist = 0;

int cv = Convert.ToInt16(crosvalidNUD.Value);

for (int j = 1; j < nv; j++)

{

gr.clearGraph();

gr.genGraph(i);

gr.Kruskal();

dist = FloydWarshal(gr);

mni = Weights(dist);

fmni += Weights2(dist);

234

for (int ii = 0; ii < dist.Length; ii++)

{

for (int jj = 0; jj < dist.Length; jj++)

{

fdist += dist[ii][jj];

}

}

}

fmni /= cv;

nd[i] = fmni;

if (chart1.IsHandleCreated)

{

this.Invoke((MethodInvoker)delegate { UpdateChart(); });

}

Thread.Sleep(100);

}

ndf = Filterd(nd);

if (chart1.IsHandleCreated)

{

235

this.Invoke((MethodInvoker)delegate { UpdateChart2(); });

}

Thread.Sleep(100);

KillTheThread();

}

private void UpdateChart()

{

chart1.Series[0].Points.Clear();

for (int i = 0; i < nd.Length - 1; ++i)

{

chart1.Series[0].Points.AddXY(i, nd[i]);

}

}

private void UpdateChart2()

{

chart1.Series[1].Points.Clear();

for (int j = 0; j < ndf.Length - 1; ++j)

{

chart1.Series[1].Points.AddXY(j, ndf[j]);

}

}

236

[SecurityPermissionAttribute(SecurityAction.Demand,

ControlThread = true)]

private void KillTheThread()

{

netThread.Abort();

}

private void button2_Click(object sender, EventArgs e)

{

chart1.Series[0].Points.Clear();

chart1.Series[1].Points.Clear();

nv = Convert.ToInt16(maxnodesNUD.Value);

nd = new double[nv];

ndf = new double[nv];

netThread = new Thread(new ThreadStart(this.calcNetwork));

netThread.IsBackground = true;

netThread.Start();

237

}

private static void fullDemo()

{

}

private static Bitmap DrawControllToBitmap(Control control)

{

Bitmap bitmap = new Bitmap(control.Width, control.Height);

Graphics g = Graphics.FromImage(bitmap);

Rectangle rect = control.RectangleToScreen(control.ClientRectangle);

g.CopyFromScreen(rect.Location, Point.Empty, control.Size);

return bitmap;

}

private void saveToolStripMenuItem_Click(object sender, EventArgs e)

{

DateTime localDate = DateTime.Now;

Bitmap bitmap = DrawControllToBitmap(stonePanel);

238

bitmap.Save("images//ornet_" + v.ToString() + ".bmp", ImageFormat.Bmp);

bitmap = DrawControllToBitmap(sttwoPanel);

bitmap.Save("images//basetree_" + v.ToString() + ".bmp", ImageFormat.Bmp);

bitmap = DrawControllToBitmap(stthreePanel);

bitmap.Save("images//main_" + v.ToString() + ".bmp", ImageFormat.Bmp);

}

private void button3_Click(object sender, EventArgs e)

{

DateTime localDate = DateTime.Now;

Bitmap bitmap = DrawControllToBitmap(stonePanel);

bitmap.Save("images//ornet_" + v.ToString() + ".bmp", ImageFormat.Bmp);

bitmap = DrawControllToBitmap(sttwoPanel);

bitmap.Save("images//basetree_" + v.ToString() + ".bmp", ImageFormat.Bmp);

bitmap = DrawControllToBitmap(stthreePanel);

bitmap.Save("images//main_" + v.ToString() + ".bmp", ImageFormat.Bmp);

}

239

public float getCPUCounter()

{

PerformanceCounter cpuCounter = new PerformanceCounter();

cpuCounter.CategoryName = "Processor";

cpuCounter.CounterName = "% Processor Time";

cpuCounter.InstanceName = "_Total";

// will always start at 0

float firstValue = cpuCounter.NextValue();

System.Threading.Thread.Sleep(500);

// now matches task manager reading

float secondValue = cpuCounter.NextValue();

return secondValue;

}

int tiks = 0;

private void timer1_Tick(object sender, EventArgs e)

{

float cpuPercent = getCPUCounter();

chart1.Series[0].Points.AddXY(tiks,cpuPercent);

240

tiks++;

}

private static double[] Filterd(double[] dist)

{

int v = dist.Count();

int w = 7;

int w2 = 3;

double[] nodes = dist;

for (int j = 0; j <w2; j++)

{

nodes[j] = 0;

}

for (int j = v-w2; j < v; j++)

{

nodes[j] = nodes[v-1];

}

for (int i = w2; i < v- w2; i++)

{

241

double sum = 0;

for (int j = i-w2; j <= i+ w2; j++)

{

sum += dist[j];

}

nodes[i] = sum / w;

}

return nodes;

}

private void graphImagesToolStripMenuItem_Click(object sender, EventArgs e)

{

bool exists = System.IO.Directory.Exists("images//");

if (!exists)

System.IO.Directory.CreateDirectory("images//");

DateTime localDate = DateTime.Now;

Bitmap bitmap = DrawControllToBitmap(stonePanel);

bitmap.Save("images//ornet_" + v.ToString() + ".bmp", ImageFormat.Bmp);

bitmap = DrawControllToBitmap(sttwoPanel);

242

bitmap.Save("images//basetree_" + v.ToString() + ".bmp", ImageFormat.Bmp);

bitmap = DrawControllToBitmap(stthreePanel);

bitmap.Save("images//main_" + v.ToString() + ".bmp", ImageFormat.Bmp);

}

private void exitToolStripMenuItem_Click(object sender, EventArgs e)

{

DialogResult result =

MessageBox.Show("Do you want to exit application?", "Warning",

MessageBoxButtons.YesNoCancel, MessageBoxIcon.Warning);

if (result == DialogResult.Yes)

{

Application.Exit();

}

else if (result == DialogResult.No)

{

//code for No

}

else if (result == DialogResult.Cancel)

{

//code for Cancel

243

}

}

private void saveAllToolStripMenuItem_Click(object sender, EventArgs e)

{

bool exists = System.IO.Directory.Exists("images//");

if (!exists)

System.IO.Directory.CreateDirectory("images//");

DateTime localDate = DateTime.Now;

Bitmap bitmap = DrawControllToBitmap(stonePanel);

bitmap.Save("images//ornet_" + v.ToString() + ".bmp", ImageFormat.Bmp);

bitmap = DrawControllToBitmap(sttwoPanel);

bitmap.Save("images//basetree_" + v.ToString() + ".bmp", ImageFormat.Bmp);

bitmap = DrawControllToBitmap(stthreePanel);

bitmap.Save("images//main_" + v.ToString() + ".bmp", ImageFormat.Bmp);

exists = System.IO.Directory.Exists("text//");

if (!exists)

System.IO.Directory.CreateDirectory("text//");

244

nodesRTB.SaveFile("text//" + "nodes_" + v.ToString() + ".txt",

RichTextBoxStreamType.PlainText);

edgesRTB.SaveFile("text//" + "edges_" + v.ToString() + ".txt",

RichTextBoxStreamType.PlainText);

graphRTB.SaveFile("text//" + "graph_" + v.ToString() + ".txt",

RichTextBoxStreamType.PlainText);

}

private void graphInTextToolStripMenuItem_Click(object sender, EventArgs e)

{

bool exists = System.IO.Directory.Exists("text//");

if (!exists)

System.IO.Directory.CreateDirectory("text//");

nodesRTB.SaveFile("text//"+"nodes_" + v.ToString() + ".txt",

RichTextBoxStreamType.PlainText);

edgesRTB.SaveFile("text//" + "edges_" + v.ToString() + ".txt",

RichTextBoxStreamType.PlainText);

graphRTB.SaveFile("text//" + "graph_" + v.ToString() + ".txt",

RichTextBoxStreamType.PlainText);

}

245

private void aboutToolStripMenuItem_Click(object sender, EventArgs e)

{

About moreForm = new About();

//moreForm.Modal = true;

moreForm.ShowDialog(this);

}

private void newToolStripMenuItem_Click(object sender, EventArgs e)

{

Graph gr = new Graph();

edge a = new edge();

node n = new node();

nd = null;

ndf = null;

dist = null;

StringFormat sf = new StringFormat();

v = 5;

246

stonePanel.Refresh();

sttwoPanel.Refresh();

stthreePanel.Refresh();

nodesRTB.Clear();

edgesRTB.Clear();

graphRTB.Clear();

}

}

}

247

	Title Page
	Copyright
	Graduate Committee Approval
	ACKNOWLEDGMENT
	Acknowledgments

	ABSTRACT
	Abstract

	List of tables
	List of figures
	Objectives
	1. General objective
	2. Specific objectives
	3. Problem definition
	4. Hypothesis
	5. Justification

	1 Introduction
	1.1 Inspirational models for robotic behavior
	1.2 Tasks of robotic swarm implementation
	1.3 Swarm robotic projects

	2 Technical vision system
	2.1 Vision systems
	2.1.1 Traditional Vision-Based Collision Detection Methods
	2.1.2 Bio-Inspired Collision Detection Methods
	2.1.3 ToF camera principle
	2.1.4 Camera-based Systems

	2.2 Historical background
	2.3 Structure and working principles
	2.3.1 Surface Recognition Improvement
	2.3.2 Data reduction

	3 Data exchange for robotic group
	3.1 Spanning tree forming for swarm robotics
	3.2 Leader based communication
	3.3 Feedback implementation and method improvement
	3.4 Implementation results

	4 Path planning methods
	4.1 Algorithm review
	4.2 Navigation algorithms analysis
	4.3 Navigation using technical vision system
	4.4 Collision detection and obstacle avoidance
	4.5 Section conclusion

	5 Simulations and experiments
	5.1 Modeling system structure and group behaviour
	5.1.1 Basic behaviour scenario for robotic group
	5.1.2 Simulation frameworks

	5.2 Robot entity
	5.3 Influence of data exchange on path planning
	5.4 Effectiveness of robotic group
	5.4.1 Terrain sectoring
	5.4.2 Effectiveness calculation
	5.4.3 Scenes description for modeling and analysis
	5.4.4 Secondary objectives placement for surface mapping
	5.4.5 Unique data as an index of effectiveness
	5.4.6 Scene completion time
	5.4.7 Informational entropy reduction analysis

	5.5 Section conclusion

	6 Conclusions
	6.1 Conclusions
	6.2 Future works

	Publications
	1. Articles with impact factor
	2. International conferences
	3. Book chapters
	4. Copyrights

	References
	Appendix A - Robotic group modeling system
	Appendix B - Network structure modeling system

