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Abstract

Interpretable machine learning is trending as it aims to build a human-understandable

decision process. There are two main types of machine learning systems: white-box and

black-box models. White-box models are inherently interpretable but commonly suffer from

under-fitting phenomena; on the other hand, black-box models perform quite well in a wide

range of application domain problems, but their reasoning behind a decision is hard or even

impossible to understand. In the soft-computing area, fuzzy inference systems are rule-based

systems that use fuzzy reasoning, bringing human perception modeling and computing with

word capability. These rule-based systems are designed either manually or automatically

but are commonly optimized to fit better some phenomena’ data (in a supervised learning

task). After the optimization process, the initial semantic meaning of fuzzy sets is modified

(slightly, in the best cases), creating a gray-box model. The principal objective of the

proposed methodology in this research work is to extract a high-quality rule in terms of

comprehensibility, accuracy, and fidelity. This is accomplished by using a fuzzy linguistic

interpretable model from an optimized neuro-fuzzy model, considering the initial knowledge

context with which it was built.

This research work proposes a linguistic granule model representing generic entities affected

by a linguistic description restricted by a context-free grammar. These abstract elements

interact in an environment, and their aptitude or performance can be measured given a
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particular metric.

The linguistic modifier changes the entities’ behavior somehow; therefore, there are

linguistic modifiers that maximize their aptitude in the environment. This work also proposes

a methodology to find the pseudo-optimal linguistic modifier to better fit entities to the

environment through grammar-guided genetic programing. Obtained results show that neuro-

fuzzy systems could play an essential role in interpretable machine learning, providing natural

language explanations from previous knowledge, keeping its semantic meaning after the

optimization process by defining a linguistic granule.



Resumen

El aprendizaje automático interpretable está en tendencia, ya que tiene como objetivo construir

un proceso de decisión comprensible para los humanos. Hay dos tipos principales de sistemas

de aprendizaje automático: modelos de caja blanca y de caja negra. Los modelos de caja

blanca son inherentemente interpretables, pero comúnmente sufren fenómenos de ajuste

insuficiente; por otro lado, los modelos de caja negra funcionan bastante bien en una amplia

gama de problemas de dominio de aplicación, pero su razonamiento detrás de una decisión

es dif́ıcil o incluso imposible de entender. En el área de soft-computing, los sistemas de

inferencia difusos son sistemas basados en reglas que usan razonamiento difuso, brinda la

capacidad de modelado computable de la percepción humana mendiante palabras. Estos

sistemas basados en reglas se diseñan de forma manual o automática, pero normalmente se

optimizan para adaptarse mejor a los datos de algunos fenómenos (en una tarea de aprendizaje

supervisado). Tras el proceso de optimización, se modifica (ligeramente, en el mejor de los

casos) el significado semántico inicial de los conjuntos borrosos, creando un modelo de caja

gris. El objetivo principal de la metodoloǵıa propuesta en este trabajo de investigación es

extraer una regla de alta calidad en términos de comprensibilidad, precisión y fidelidad. Esto

se logra utilizando un modelo lingǘıstico difuso interpretable a partir de un modelo neuro-

difuso optimizado, considerando el contexto de conocimiento inicial con el que se construyó.

Este trabajo de investigación propone un modelo de gránulo lingǘıstico que representa
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entidades genéricas afectadas por una descripción lingǘıstica restringida por una gramática

libre de contexto. Estos elementos abstractos interactúan en un entorno y su aptitud o

rendimiento se puede medir dada una determinada métrica.

El modificador lingǘıstico cambia el comportamiento de las entidades de alguna manera;

por lo tanto, existen modificadores lingǘısticos que maximizan su aptitud en el medio.

Este trabajo también propone una metodoloǵıa para encontrar el modificador lingǘıstico

pseudoóptimo para adaptar mejor las entidades al entorno a través de la programación

genética guiada por la gramática. Los resultados obtenidos muestran que los sistemas

neurodifusos pueden desempeñar un papel esencial en el aprendizaje automático interpretable,

proporcionando explicaciones en lenguaje natural a partir de conocimientos previos, manteniendo

su significado semántico después del proceso de optimización mediante la definición de un

gránulo lingǘıstico.
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Chapter 1

Introduction

Nowadays, Artificial Intelligence is immersed in daily human life through automated decision-

making systems. It is common to interact with those systems in various services such as

bank loans, recommender systems, medical contexts. The decision-making by those systems

directly impacts the final user due to the possibility of service denegation.

Just as there are situations in which the impact of the decision is not critical, there may

be situations where it affects the final user considerably. Because of this, it is necessary to

know in-depth how the models reach some conclusions and generate their outputs.

Interpretable Machine Learning (IML) area aims to create Machine Learning models

that are easily understandable by humans. IML has been growing in popularity due to the

decision made by those models that can directly affect people. Moreover, there are spreadly

adopted by the enterprises to automatize specific processes; there are so many services that

use ML models involved in daily human life. The goal of create interpretable models can

be achieved by various methods, such as: using intrinsic interpretable models, regularization

techniques, and post hoc explanation techniques. One trend is to build surrogate models

(lower complexity) than the original one and more interpretable to understand the decision
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process, such as rule-based models (Bastani et al., 2017; Chan and Chan, 2020; Vasilev et al.,

2020).

Learning models called black boxes have been widely adopted by both the scientific and

business community to solve problems of very different contexts. The common aspect between

these applications is the objective of achieving the best possible performance (minimum

error). However, it is vital to know why the learning model gives specific results to achieve

confidence in the model. In black-box learning models, the data scientist does not know the

why of the model when it is generated to solve a particular task, so this type of model is

critical in problems such as medical diagnosis, detection of terrorism, and other applications

that suppose a risk for people (Ribeiro et al., 2016).

There is special attention in achieving that the models of automatic learning grant to the

user explanations of the reasoning to arrive at a particular result, the name of the area that

is in charge to solve this situation is commonly called Explainable Artificial Intelligence or

Interpretable Machine Learning; In this work, the concepts will be mentioned indistinctly.

Explanations are necessary for understanding the models and generating confidence in machine

learning models. If there are explanations of the model and do not correspond with the expert

knowledge of the domain, the use of that particular model could easily be omitted (even if

it presents an acceptable performance); the most important thing is that it would offer the

user the possibility of creating new models in order to avoid the errors detected through the

explanations (Smith and Nolan, 2018).

The machine learning models have been able to solve increasingly complex problems.

However, these models have become more complex every time they are challenging to understand

in the development of their conclusions. Due to this tendency, an interest has arisen in

the area of Explainable Artificial Intelligence, as indicated by the emergence of different
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government programs, such as DARPA’s Explainable Artificial Intelligence program 1 and

the General Regulation of Data Protection of the European Union (Goodman and Flaxman,

2016) where the emphasis is placed on the user’s right to an explanation, this made from the

point of view of the end final user.

In the area of Explainable Artificial Intelligence, there are several proposals to create

explanations of machine learning models. Some of them are focused on including the user

in the learning process (human in the cycle) (Goodman and Flaxman, 2016), unification of

logic and probability to provide learning models with a formal representation (Belle, 2017),

building knowledge bases from results generated by learning models supported by explicit

knowledge of the domain expert (Zhuang et al., 2017).

One of the main problems in creating interpretable learning models lies in the form of

representation of the data, for which there are several possibilities, such as treating the data

as fuzzy sets, probabilistic sets, rough sets, in order to reduce the complexity of the data.

The reduction of dimensionality of data through feature transformation or relevant feature

detection might benefit the tracking of the transformation of the data to generate rules

later. This is one of the arguments by which it is feasible to use Granular Computation,

whose paradigm is inspired by how the human mind processes information through multiple

perspectives in hierarchy form. This offers the possibility of abstracting at different levels

the data for the generation of different types of explanations, from the most specific to the

most general.

The primary process in Granular Computing (GrC) is to represent objects or patterns

through units called granules; that process is called granulation. These granules can be

composed of other granules. One of the primary granule’s characteristics is that they can

1https://www.darpa.mil/program/explainable-artificial-intelligence
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be represented by any model such as those discussed above. The most important about this

characteristic is that a composition of many mathematical models can model the granule;

that is to say, it can be modeled from different perspectives.

In this work, we take advantage of the inherent interpretability that brings Fuzzy Inference

Systems (FIS), rule-based models, and their antecedents are described linguistically. The

antecedent is represented by fuzzy variables and sets, proposed by Zadeh (Zadeh, 1975).

The inference process of those systems is performed through fuzzy reasoning, which aims to

represent human perception and their inference mechanism under uncertainty.

An interesting characteristic of FIS is that their knowledge representation is composed

of IF-THEN rules, where their antecedents and consequents are in natural language. For

example, a proposition can be “Temperature is hot”, where Temperature is related to an

input attribute and hot to the set which partially belong. As was described, this formal

notation potentially brings an intrinsic high interpretability degree if their components are

well-defined (Mencar and Fanelli, 2008).

The FIS are used in a variety of application domains in ML context, such as medical (De

Medeiros et al., 2017; Gayathri and Sumathi, 2016; Honka et al., 2011; Pota et al., 2017;

Yang et al., 2014; Panoutsos et al., 2010), robotics (Deshpande and Bhosale, 2013; Adhyaru

et al., 2010), decision making (Zein-Sabatto et al., 2013; Cheng et al., 2008; Azadeh et al.,

2016). Often this FIS modeling is data-driven in which their input partition, membership

functions parameters, and rule structure are discovered by some unsupervised technique

(e.g., clustering). However, in the optimization process in which these systems’ performance

generally increases, there is a detach in the semantic meaning between the initial knowledge

base and the optimized one. We propose a linguistic granular model to bring back the

semantic meaning to the resulting optimized knowledge base; therefore, it increases the

interpretability and explainability of the resulting model.
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1.1 Hypothesis

1. Linguistic granules can be used to bring semantic meaning to optimized fuzzy inference

systems by the principle of justifiable granularity.

1.2 Objectives

� Methodology for automatically designing the initial interpretable fuzzy system.

� Formal definition of the linguistic granule.

� Design the optimization method to find the pseudo-optimal granule design parameters

in terms of specificity and coverage.

1.2.1 Particular objectives

� Designing and development of software framework to build type-1 and interval-type-2

fuzzy inference systems.

� Designing and development of software framework to granular linguistic optimization.

� Develop and publish the solution as a framework to promote research in explainable

artificial intelligence applying fuzzy logic.
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1.3 Research contributions

1.3.1 Book chapters

Navarro-Almanza R., Juárez-Ramı́rez R., Licea G., Castro J.R. Automated Ontology Extraction

from Unstructured Texts using Deep Learning (2020) Studies in Computational Intelligence,

862, pp. 727 - 755 DOI: 10.1007/978-3-030-35445-9 50

Navarro-Almanza R., Castro J.R., Sanchez M.A. Interpretable machine learning from granular

computing perspective (2019) Studies in Systems, Decision and Control, 209, pp. 185 - 197

DOI: 10.1007/978-3-030-17985-4 8

1.3.2 Journal articles

Navarro-Almanza R., Sanchez M.A., Castro J.R., Mendoza O., Licea G. Interpretable Mamdani

neuro-fuzzy model through context awareness and linguistic adaptation (2022) Expert Systems

with Applications, 189, art. no. 116098 DOI: 10.1016/j.eswa.2021.116098

Raul Navarro-Almanza, Mauricio A. Sanchez, Guillermo Licea, Juan R. Castro, Knowledge

transfer for labeling unknown fuzzy sets using Grammar-Guided Genetic Algorithms, Applied

Soft Computing, Volume 124, 2022, 109019, ISSN 1568-4946, DOI: 10.1016/j.asoc.2022.109019.

Navarro-Almanza R., Sanchez M.A., Castro J.R., Mendoza O., Licea G. Hierarchical Decision

Granules Optimization Through The Principle of Justifiable Granularity. (2022) Special Issue

of “Computación y Sistemas” on “Emerging Issues and Applications of Fuzzy Systems Neural

Networks, and Metaheuristics” DOI: 10.13053/CyS-26-2-4252.
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1.3.3 Developed software

Publication and copyright registration of the generated software:

� FuzzySystem Framework (Copyright registration in process).

URL: https://fuzzy-framework.readthedocs.io/en/latest/

� IT2FuzzySystem Framework (Copyright registration in process)

� GGGP Framework (Copyright registration in process)

� Neuro-fuzzy Framework (Copyright registration in process)

� Symbolic Transformer Framework (Copyright registration in process)

1.4 Document organization

The following sections correspond to theoretical foundations related to this thesis’s research

and contributions in Section 2. Section 3 provides a detailed description of the proposed

solution to the definition and optimization of linguistic granules to build interpretable machine

learning models applying the principle of justifiable granularity. Section 4 presents a set of

the conducted experiments on the model evaluation and sensitivity. Finally, Section 5 finishes

with the conclusion and implications of the proposed approach.

https://fuzzy-framework.readthedocs.io/en/latest/
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Chapter 2

Theoretical foundations

2.1 Machine learning

Machine learning is an artificial intelligence sub-area that aims to automatically find the

best parameters of some mathematical model to describe some phenomena. When there

are many data measured that describe these phenomena, it can be find a function that

approximates its behavior through the samples, and this specific case is called supervised

learning. Those models can be used to predict some quantity called regression task (whose

output are real numbers) or to predict some class called classification task (whose output are

natural numbers). The best parameters of some models are found by optimization methods,

for example, the well-known gradient descent that is very popular in Neural Networks models.

A machine learning model can be represented as a function f : X×W → Y whereX and Y

represent the inputs and outputs respectively, these data is contained in the training dataset;

and W are the weights of that adjust the output of the system (in supervised training).

The objective of learning methods is to find the best weights (W ⋆) that satisfy the next
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relation f(X,W ⋆) ≈ Y . In that brief machine learning model description, it is noticeable

that the main objective of these models is to approximate the target value, diminishing the

importance of how and why the decision is generated.

2.1.1 Interpretable machine learning models

The interpretability in the machine learning context is defined as the capability of some

machine learning model to be easily understandable by the data scientist and even the final

user of the model, such as customers of some application. They are some definitions of

interpretability from a non-mathematical perspective identified by Molnar in (Molnar, 2019),

such as interpretability, the degree to which humans can understand the cause of a decision

(Miller, 2017). Furthermore, interpretability is the degree to which a human can consistently

predict the model’s result

The use of machine learning models in daily human life has become ubiquitous (Varshney,

2016). They are present in applications and services such as loans application, recommender

systems for multimedia content, online shopping, and so many others. The decision-making

by those systems directly affects the final user. However, all of them have the right to know

why some decision has been made; of course, in many cases, machine learning model decisions

do not negatively impact the user in case of making some mistake, which means those systems

are not critical.

The interpretability in machine learning is growing in importance because of critical

systems whose decisions could negatively affect the user, such as medical applications (Li

et al., 2017), loan approvement systems (Tsakonas et al., 2006), pedestrian detection in the

autonomous driving car (Haspiel et al., 2018). The interpretability not only is focused on

giving the final user an explication of why some decisions have been made, but it might be

given to the data scientist insights of how the ML model is working to arise the conclusions
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to make predictions, and more importantly, fix undesired behavior of the system in the face

of some rare input data (different distribution of data in the training phase).

In the machine learning domain, there are many different mathematical models to represent

some phenomena. There is a consensus of which models are easily interpretable (or simply

interpretable) in terms of interpretability. There is a common idea that the simpler, the more

interpretable model is, that sounds logic if we consider the fewer parameters and generally

the lack of non-lineal transformations.

They are some fields that already have approaches to get a better understanding of

the problem and solution through IML, such as e-learning to help students to a better

understanding of subjects (Williams et al., 2018); In biology, understanding high-order

interactions drive gene expression (Basu et al., 2018); In medicine to build a system to

predict patients mortality with ST-elevation myocardial infarction (Li et al., 2017), building

interpretable decision tree for diagnosis, and other tasks (Valdes et al., 2016); In neuroscience

to studied a family of N-back working memory (Caywood et al., 2017); In vision-based systems

to achieve better interpretability by a dictionary of atomic shapes in decision boundaries

(Varshney, 2017). In-text analytics to document categorization as a classification task

with individual word relevance (Arras et al., 2017); In robotics to generate explanations

in humanoid robots (Beaton, 2018; Huang et al., 2018).

In machine learning problems, there is a common threshold between the quality of what

is the predicted result of the model and why the model gives a specific output. The main

problem is that appeared to improve one of them affects negatively another one.

The machine learning models can be classified by their transparency. In this work, this

concept refers to the ease with which the user can understand why the model generated a
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particular result. There are two know classes of models: gray-box and black-box models,

which will be detailed below.

The machine learning models that are considered have gray box models; they stand out

for their lack of non-linear computations, such as decision trees and linear models. Those

models can be performed some operations to achieve some understanding of how the system

makes the predictions. Also can be explained by counterfactual cases, which means to know

which features and how can be modified in order to change its output to some desired result

of the model.

The black box models generally have a huge amount of hyper-parameters and weights,

the same for the non-linear computations that perform. The most popular black-box models

are the Neural Networks due to a large amount of successive non-linear transformations. It

is well known the lack of interpretability of these models. However, they can achieve better

behavior in many complex tasks.

2.1.2 Scope of interpretability

There are different perspectives in terms of model interpretability; one of them is focused on

generating an explanation for each instance that the model evaluates. On the other hand,

there is a perspective that aims to explain the entire behavior of the model. Both trends

have their own advantages and drawbacks. The selection of one of them depends on the

application domain and goals.

Global interpretability aims to generate an explanation of the entire solution surface of

the model. The most common artifact to create such an explanation relies upon rule-based
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models. These approaches consist of creating a knowledge base of the entire domain of the

problem from the solution surface. Within the most outstanding works, it is found that

of Lakkaraju (Lakkaraju et al., 2016), where the knowledge base is composed of decision

sets, and in the learning process, various objectives are taken into account, such as fidelity,

disambiguation, interpretability.

Local interpretability is focused on generating an explanation for each prediction (or

evaluation). Usually, this explanation relies on identifying the essential attributes for some

model output. There are some approaches where its interpretability relies upon the measure

of certainty to give to the user of machine learning model (van der Waa et al., 2018).

2.1.3 Interpretable models

Another perspective of model explanations depends on the model itself. There are techniques

of interpretability that only can be used in certain machine learning models, such as the

Learning Vector Quantization model (Brinkrolf and Hammer, 2018; Hofmann et al., 2014),

Multi-operator Temporal Decision Trees (Shalaeva et al., 2018), Bayesian-based model for

learning rule sets (Wang et al., 2017). On the other hand, some techniques do not require

some specific model to work. Generally, the explanation techniques that require a specific

model are more interpretable because of understanding model behavior. However, the model-

agnostic techniques can be used in a broader application domain.

Model-dependent interpretability techniques depend on the machine learning model that

is used. The insights in those techniques are more easily understandable by the data

scientist. Conversely, In model-agnostic interpretable techniques, the selected model for

pattern discovery is irrelevant; a common way to understand them is to visualize the model
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as a black box where only their inputs and outputs are analyzed.

2.2 Granular Computing

The Granular Computing paradigm is inspired by how the human mind processes information

through multiple perspectives in hierarchy form. This hierarchy thinking form allows focusing

on different essential attributes inherent of some object, depending on the requirements in

reasoning processes.

Granular Computing is a multidisciplinary area that encompasses theories, techniques,

models, and methodologies to solve complex problems. It is a paradigm of solving problems

with a single fundamental element called a granule, formulated through the abstraction of

properties in common between objects or patterns in the data. The properties that can exist

between these objects or patterns are similarity, equality, proximity (Pal et al., 2010).

In granular computing, the process of creating the information granules is crucial and can

be represented by various models and interactions between them. Granular representation

is advantageous when the problem presents uncertainty and incomplete data. A granule can

be modeled as A : X → G(X) where X is the universe of discourse and G is the framework

of information granules. The process of granulation can be represented as a mapping from

one domain to another.

There is an important concept in Granular Computing that is called Granular World (G)

that refers to the environment of information granules that supports all process in information

granulation, information processing and information exchange (Bargiela and Pedrycz, 2003).

In this environment can be composed by different granules order but same domain, each

order has a different perspective of data, in other words, different hierarchies of granules;
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where the formal representation of Granular World is G =< X,G,A,C >, where

� A: is a granule of information.

� Gn: is the granular world.

– X: universe of data discourse.

– G(X): denotes the framework of granules of information.

– An: is a information granule (of type n).

– C: is a mean of communication

Some exciting concepts un Granular Computing paradigm, such as i) principle of justifiable

granularity, ii) coverage, and iii) specificity, the first one is referred to as a fundamental

concept in the paradigm and is about forming information granule from data by available

evidence. The concept of specificity refers to the level of characterization of a granule to detail

some abstraction of the information granule. Finally, coverage is referred to the number of

elements of the domain that correspond to some description of an information granule. There

is a relationship between specificity and coverage; while the specificity increases, the coverage

decreases, and vice versa.

The figure 2.1 is shown the behavior of the coverage and specificity. If the specificity is

very high, then the coverage is the number of elements in the universe of discourse that belong

to the given specification. Otherwise, to achieve high coverage, reducing the specificity and

describing the information granules in a very general form is necessary.

2.2.1 Granular Computing Models

A granule of information can be a class of numbers, a group of images, a class of regions,

a set of concepts, a set of objects, and a category of data. The granules of information
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Figure 2.1: Relationship between coverage and specificity in granular models.

can be represented in the form of fuzzy sets, rough sets, fuzzy rough sets, neural networks,

probabilistic sets. (Bargiela and Pedrycz, 2003). Each model represents a different perspective

of data. In addition, the composition in the granules is possible; therefore, a granule of a

particular order can be used to grant an explanation considering different points of view or

several explanations according to the perspective.

There are some approaches that combine both worlds, machine learning and granular

computing, to overcome some issues related to the considerable amount of data (Guo and

Wang, 2019), related to interpretability issues (Xu et al., 2015; Nápoles et al., 2018), for

knowledge representation as in Pedrycz (Pedrycz and Chen, 2011) proposes the use of granules

of information to represent a knowledge base using fuzzy sets, this knowledge base is created

from different learning models.

In the following, it is described some of the most used models in the area of Granular

Computing.
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Rough sets

In rough sets, situations are modeled where one can not distinguish the belonging of an

object in a given set, but an element can be related to other elements, so upper and lower

limits are defined for the description of the element in a given set, as shown below:

RX =
⋃

{Y ∈ U/R|Y ⊆ X}

RX =
⋃

{Y ∈ U/R|Y ∩X ̸=}

Where X is a classic set of objects, in a universe of speech U , R is the relation between

existing elements in U . This description of elements is usually used to represent relationships

between them.

Fuzzy sets

Theory introduced by Zadeh (Zadeh, 1965) to model the uncertainty in natural language.

It is a model to describe the degree of belonging in continuous space A = {(x, µA(X))|x ∈ X},

where µA : X → M is the membership function of x in A that maps X to the M membership

space. The membership µA(X) indicates the degree of similarity (compatibility) of a x object

to a concept characterized by the fuzzy set A. The domain of M corresponds to the range

[0, 1].

One of the main characteristics of the modeling of granules by fuzzy sets is the one that

can relate a granule to a linguistic variable and thus provide a higher degree of interpretability

for the data scientist.
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Fuzzy Rough Sets

In fuzzy rough sets (Dubois and Prade, 1992), the aim is not only to model uncertainty,

as in the case of fuzzy sets, but also to add concepts of incompleteness and imprecision. Here

is how to model this type of sets:

(RB ↓ RA)(x) = inf
y∈U

max{1−RB(x, y), RA(x)}

(RB ↑ RA)(x) = sup
y∈U

min{1−RB(x, y), RA(x)}

Where the upper and lower approximations involve fuzzy equivalence and decision classes.

Neural Networks

Granular neural networks are models capable of processing granular data, which may well

come from both numeric and linguistic data (Ding et al., 2014). This processing may consist

of prediction of new information, extraction of information in the form of granules, a fusion

of sets of information granules, or compression thereof.

The use of neural networks for processing or identification of granules is widely used, the

most well-known works for generation of rules using granular neurons (Ding et al., 2014),

neural networks using a scheme of functional neurons that allow various representations of

granules (Loia and Tomasiello, 2017), neuro-fuzzy networks for generating rules by granular

computation (Panoutsos and Mahfouf, 2010).
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2.2.2 Principle of justifiable granularity

The principle of justifiable granularity is a technique to find pseudo-optimal model parameters

in order to define the adequate information granule size. The representational parameters of

the granule Ω directly impact its quality design. There are two properties of every granule

that reflects indirectly the model design quality that can be used by the principle of justifiable

granularity to find a suitable design granule representation of phenomena. In general terms,

the granule size should be as smaller as possible but at the same time should cover as many

samples as possible. The specificity is defined as the granule semantic meaning, a highly

detailed granule should imply that the smaller the information granule is, the better. The

coverage is the amount of experimental evidence that supports the granule design. For

instance, if the granule Ω is defined as an interval, we should expect to have a significant

amount of data between the bounds of the granular model (Pedrycz and Homenda, 2013).

There is a conflict in both granules’ properties; the lower the specificity is, the higher

coverage is. Therefore, the ideal granule representation should have the highest coverage

and specificity. Due to this trade-off, finding the best granule parameters can be set up as a

multi-objective optimization problem whose objectives are to maximize both the specificity

and coverage.

2.3 Fuzzy Logic

Fuzzy logic is a multivariate logic that is contrary to bivariate in which the truth values

are {0,1}, their truth values belong to the interval [0, 1]. This is an interval that represents

the perceived degree of a person in a given context. The term Fuzzy Logic was coined by

Zadeh (Zadeh, 1965) as an approach to model how people make decisions based on imprecise

information and non-numerical information. Human beings can grasp complex concepts and
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make decisions under uncertainty using linguistic information.

2.3.1 Fuzzy sets

Fuzzy sets were proposed in contrast with a classical set; they do not have a crisp boundary;

instead, the elements belong in some degree to a fuzzy set that is represented by a real number

between 0 and 1. Membership functions model the characterization of degree transition of

truth values.

A set of ordered pairs define a fuzzy set A in X domain (equation 2.1):

A = {(x, µA(x)|x ∈ X)} (2.1)

µA(x) ∈ [0, 1] is the membership function that models the membership degree of the

elements x in the universe of discourse X.

2.3.2 Fuzzy Systems

The Fuzzy system is a type of rule-based knowledge system that represents their propositions

using natural language for antecedents (also for consequents in Mamdani systems). This

singular characteristic allows the expert to easily understand the behavior of the model if

their linguistic representation is aligned to the user.

These knowledge models can be built manually by experts or be automatically designed,

usually by clustering techniques. The following fuzzy rule base shows an example of Mamdani-

type FIS knowledge base for m rules, n inputs, and p outputs classes:
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Figure 2.2: a) Example of Gaussian membership function with values m = 5, σ = 3. b)
Example of Triangular membership function with values a = 3, b = 5. c) Example of

Trapezoidal membership function with values a = 2, b = 4, c = 6, d = 8.

R1 : IF x1 is low and . . . and xn is low THEN, y is G1

R2 : IF x1 is low and . . . and xn is high THEN, y is G2

...

Rm : IF x1 is high and . . . and xn is low THEN, y is Gp

(2.2)

Where xi and y are fuzzy variables, they represent the rule antecedents and consequents,
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respectively. The Zadeh’s linguistic variable (Zadeh, 1975) is characterized by a quintuple

(x, T (x), X,G,M), which x is the name of the variable; T (x) is the term set of x, linguistic

terms; X is the universe of discourse; G is a synthetic rule which generates linguistic terms in

T (x); M is a semantic rule which associates each linguistic value A its meaning M(A), where

M(A) denotes a fuzzy set in A. A fuzzy set A in X domain is defined as a set of ordered

pairs (equation 2.1).

Fuzzy systems perform the inference of the complete model by three principal steps:

1. Fuzzification of all inputs values through the defined membership functions.

2. Inference process based in the knowledge base rules, and finally.

3. The process of defuzzification that maps the resulted fuzzy value (inference process) to

a crisp value.

Given the following generic rule structure: IF xi
1 is A1 and . . . and xi

n is An THEN yi is

Gp.

The fuzzification process performs a mapping of the input (xi
1, where the super-index

is the instance and sub-index i the attribute domain) to a fuzzy space by a membership

function (µA(x)). The membership function corresponds to the antecedent design of a given

rule. After the fuzzification process, every input belongs to the interval [0,1] domain, which

represents the membership degree of belongingness to a fuzzy set (concept).

The inference process is conducted by the evaluation of every rule in the knowledge base.

It is important to notice that the output in these step belongs to the fuzzy domain, which

means that every rule would have a firing strength that represent the compatibility of the

input to a given rule. The inference operation are performed by the t-norm operator (∗̃),

that could be set to different process such as: minimum or product operation, among others.

The equation 2.3 shows the compatibility degree (α) process of a given fuzzy rule (l).
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αl(xi) = µAl
1
(xi)∗̃ . . . ∗̃µAl

n
(xi) = T̃ p

r=1µAl
r
(xi) (2.3)

Where xi is a given instance input, µAl
n
is the membership function that represent the

perception model of the antecedent n (nth input attribute) in rule l.

In order to get output fuzzy value of the rule, the compatibility value perform a ∗̃ operation

to the consequent defined in the rule l, µBl(y) = µGl(y)∗̃αl.

They are many methods to transform the resulting fuzzy value to a crisp value, one of

them is the center-of-set defuzzification method, equation 2.4.

ŷCOS(x′) =

∑m
l=1 COG(Gl)αl(x′)∑m

l=1 α
l(x′)

=

∑m
l=1 c

lαl(x′)∑m
l=1 α

l(x′)
(2.4)

Which COG is the center of gravity of the membership function, m is the number of

fuzzy rules in the FIS, x′ is an arbitrary input crisp value to perform the inference and

defuzzification process; cl is the center of the lth consequent set; αl is the firing level of the

rule.

Linguistic hedges

Linguistic hedges are modifiers that transform a membership function (Zadeh, 1972), usually

this modifier is represented by the expression Ap (equation 2.5) where A is a fuzzy set, and

p is the value that modifies membership function.

Ap = {(x, µA(x)
p)|µA ∈ [0, 1]} (2.5)

When the value of p > 1, the membership function concentrates its support, but if p < 1
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performs an opposite operation, the dilation. A linguistic term can represent the different

values of the exponent, a common (and arbitrary) value for the “very” term is p = 2, which

is coherent by its semantic notion of concentration (imprecision/uncertainty reduction), see

figure 2.3a. On the contrary, the linguistic term “kind-of” is related to an increment of

uncertainty, therefore should be represented by a p < 1, see figure 2.3b. These linguistic

modifiers can be composed of more than one hedge, named hedge chain, for example, “very

very”.

This work also considers another linguistic modifier that modifies the membership function

by translation instead of operating on uncertainty. For example, the hedge chain “more than”,

which can be modeled by calculating µA(x − r), where r is the shift factor of its core (see

figure 2.3c). The main reason to use a fuzzy hedge transformation is to create an interpretable

layer better to understand the machine learning model after the optimization process. Due

to this, it is important to select easily understandable linguistic terms and associate them

with the transformation function that corresponds to their semantic meaning.
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Figure 2.3: In a) The linguistic hedge “Extremely” is applied to the fuzzy set “Hot”,
which performs a concentration operation over its membership function. In b) The
linguistic hedge “More-or-less” is applied to the fuzzy set “Hot”, which performs a

dilation operation over its membership function. In c) The linguistic hedge “Upper than”
is applied to the fuzzy set “Cold”, which performs a translation operation over its

membership function.
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2.4 Grammar-Guided Genetic Algorithms

Grammar-Guided Genetic Programming (GGGP) is a Genetic Algorithm (GA) used in

optimization problems. GA is inspired by biological evolution, where the fittest individual

survives and crosses with another to create offspring equally or better fitted. These abstractions

are formally described to be computable and get a pseudo-optimal solution of an optimization

problem relying on operators such as mutation, crossover, and selection.

The phenotype represents the domain solution space of a given problem, and in order

to transform this representation to a computable form, the phenotype is mapped to a

genotype space. Usually, the genotype is a binary representation of the solution space.

For example, given an equation whose solution space is in the real values domain, their

computable representation could be binary strings representing a limited range of possible

real number representations. Generally, the genotype length is fixed to a certain number

of bits in their representation; therefore, for a wide range of problems whose phenotype

length is highly variable, this kind of representation is not suitable. Genetic Programming

aims to cover problems that require variable-length representation, commonly used to find

structures rather than parameters. The genotype is a tree-based representation. However,

these representations are non-restricted; therefore, in the optimization process might be hard

to discriminate against well-formed individuals.

In Grammar-Guided Genetic Algorithms, each individual is encoded by a graph and

structured by a context-free grammar (Manrique et al., 2009), all possible derivation trees

denote the universe of possible solutions. Figure 2.4 shows the whole methodology of

grammar-based genetic programming. At the first step, a population is randomly generated,

and then those individuals are evaluated by a fitness function to measure their aptitude (how

close they are to the goal). Some portion of the population is selected to reproduce using

the fitness values, applying a crossover operator that combines two individuals to create
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a new one with their parents’ information. Once the offspring are generated, the mutation

operation is randomly applied to some portion of the new population. The mutation operation

modifies some parts of each individual, adding some randomness that might result in the best

individuals. After applying the genetic operators to the individuals, the process is repeated

until termination criteria are met.

start
Stop criteria


reached

yes

end

no

Generate

population

Select the best
group


individual 

candidates

Crossover

operation

Mutation

operation

EvaluationMerge
individuals

Select top k
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Figure 2.4: Grammar-Guided Genetic Programming flow

The algorithmic view of the methodology is presented in algorithm 1.
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Algorithm 1: Grammar-Guided Genetic Programming Algorithm

Data: Source Fuzzy Set: S,
Target Fuzzy Set: T ,
Number of generations: g,
Mutation rate: mr,
Selection percentage: s
Number of best top k candidates
Tolerance error: err
Result: Best hedge candidates (R) to approximate hedges(S) → T

1 i = 0;
2 R = ∅
3 P = Generate an initial population;
4 while i < g and max(F) < err do
5 F = fitness(P ;S, T );
6 S = Select the top s best candidates based on F ;
7 C = crossover(S);
8 M = mutate(C,mr);
9 P = merge(M, C,P);

10 i = i+ 1

11 end
Output: The best k candidates of set R



Chapter 3

Interpretable Machine Learning

Model

3.1 Linguistic Granule-based Grammar-Guided Genetic

Programming Algorithm

In this work, fuzzy systems are the core model to build an interpretable machine learning

model. The reason for this selection is the user-friendly interface of fuzzy systems, which

offer an explanation of the decision-making process due to the usage of natural language.

Moreover, their neural-network representation allows us to optimize the design parameters

by gradient-descend-based algorithms for performance improvement.

Even staring from an interpretable and well-designed knowledge base, after the optimization

problem, the semantic meaning of the fuzzy sets is lost. In order to find the pseudo-optimal

linguistic description to represent the optimized membership functions design parameters, a

grammar-guided search is proposed using an evolutionary algorithm.
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The optimal linguistic description should have the following characteristics:

� The linguistic description must be as specific as possible, which means that the smaller

the length is, the better.

� The linguistic description must approximate a given reference entity.

The characteristics of the linguistic description are aligned to granule characteristics,

specificity and, coverage.

The linguistic granule is defined as the quintuplet L = (e, d,G, T, E), where e is an entity

which interacts in the environment E. d is the linguistic descriptor which is a derivation

tree of the grammar G and, T is the transformation function that modifies a given entity

ethrough the descriptor d.

The specificity of the granule L represents the lack of ambiguity and uncertainty in the

description. For instance, it could be defined as shown in the equation 3.1. The smaller the

descriptor is, the better. ρ is a permittivity parameter that allows controlling the penalization

threshold of the description’s length; γ is the parameter for slope control which can create a

smoother transition.

sp(l) = 1− 1

1 + e
−length(l)−ρ

γ

(3.1)

The coverage of the granule L is defined as the performance or aptitude value of the entity

e interacting in the environment E. In order to visualize a function that represents this idea,

consider the equation 3.2, which is the correlation between two elements. The higher the

approximation is, the better. The coverage is the experimental evidence or support of the

actual linguistic granule. The coverage measures the similarity or approximation of the

transformed entity e to the target or references y.
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Figure 3.1: Pareto front of specificity and coverage trade-off.

cov(l; y) = 1−
∑

i(yi − T (l)i)∑
i(yi − ȳ)

(3.2)

In order to find the best descriptor d ∈ G, it is proposed the definition of a Pareto front

by multiplicative arrange of the specificity and coverage, equation 3.3. Figure 3.1 shows an

instance of the Pareto front of the proposed metrics for specificity and coverage.

pareto(l; y) = sp(l)× cov(l; y) (3.3)

The search process to find the best linguistic description of an entity to perform better an

environment is carried out by a proposed evolutionary algorithm. The individual genotype

is represented as a tree structure and is a derivation of a grammar G. The generation process

of the individuals is performed following the algorithm 2. In order to generate individuals

that belong to a given context-free grammar, it is needed to explore each node until they

reach only terminals (see figure 3.2). Due to the infinite loops that could exit, we proposed a
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First
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Figure 3.2: Derivation tree exploration example to create individuals restricted by CFG.

heuristic to increasingly high the probability to reach all terminal states by exploring paths

closer to leaf nodes.

The principal parameters of the algorithm are δ and graph depth d. After d iterations it

is performed a reduction of the probability of being selected certain paths farther to terminal

nodes. The probability decrease value is given for δ, as lower the value is, the exhaustive the

exploration is. On the contrary, if δ has a big value, fewer explorations are performed.
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Algorithm 2: Population generation algorithm in 3GP

Data: Context-Free Grammar: CFG,

Number of individuals: N

Delta: δ,

Graph depth: d

Result: Population set P

1 P = ∅;

2 i=0;

3 while i < N do

4 Generate an initial random derivation tree based on the grammar CFG.

G = random derivation(G);

5 j=0;

6 while has non terminals(G) do

7 if d < j then

8 G = random derivation(G)

9 end

10 else

11 dist = steps to terminal(node)∀node ∈ nodes(G);

12 weights = max(dist)/dist− j × δ;

13 ρ = weights/
∑

weights, where weights ∈ [0, inf);

14 Random derivation of a node based in probability distribution ρ

G = G ∪ random derivation(G, ρ);

15 end

16 j = j+1;

17 end

18 P = P ∪G;

19 i = i+1;

20 end

Output: The population set P
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Algorithm 3 describes the general grammar-guided genetic programming procedure. The

main parameters are the Context-Free Grammar CFG, the environment in which each

individual interacts and get a reward value (fitness), number of individualsN to be generated

and maintained, the maximum number of generations g, mutation ratem, selection percentage

s, number of best top k candidates as output, tolerance error (err) to early stop the

procedure, δ and δm are the values to restrict the exploration depth in the population

generation and mutation, respectively. Graph depth d is the iteration threshold to start

applying the regularization parameters δ and δm. Parsimony (ρ) is a regularization parameter

for penalizing long individuals. Diversify (d̃) establish the range of iteration where the

diversification procedure is executed, which prunes similar individuals (algorithm 4).
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Algorithm 3: Grammar-Guided Genetic Programming Algorithm

Data: Context-Free Grammar: CFG,
Environment: fitness,
Number of individuals: N
Number of generations: g,
Mutation rate: m,
Selection percentage: s
Number of best top k candidates
Tolerance error: err
Delta: δ
Delta for mutation: δm
Parsimony: ρ
Graph depth: d
Diversify: d̃
Result: Best top k individuals (P)

1 i = 0;
2 //Generate an initial population restricted by CFG
3 P = generate(C, N , δ, d);
4 while i < g and max(F) < err do
5 F = {fitness(p)− length(p)× ρ|∀p ∈ P};
6 S = Select the top s best candidates based on F ;
7 C = crossover(S);
8 M = mutate(C,m, δm);
9 P = merge(M, C,P);

10 if i%d̃ = 0 then
11 P = diversify(P);
12 end
13 i = i+ 1

14 end
Output: The best k candidates of set P
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Algorithm 4: Algorithm for diversification of the population in 3GP

Data: Sorted Population: P ,
Number of desired individuals: N
Result: Population subset P̄

1 Select the individual with the highest fitness value.
2 P̄ = p0 ∈ P ;
3 P = remove(P , p0);
4 i=0;
5 while i < N do
6 pi = {p|min similarity(p, P̄)∀p ∈ P};
7 P̄ = P̄ ∪ pi;
8 P = remove(P , pi);
9 i = i+1;

10 end
Output: The population subset P̄

3.1.1 Evolutionary operators

The evolutionary operators such as crossover and mutation work with derivation trees formed

by the proposed grammar. Those operators ensure that the resulting individuals belong to

the grammar. Therefore, they have a well-formed structure avoiding incoherent solutions.

The crossover operator performs a combination of two individuals, in which their offspring

are expected to create better solutions to the proposed problem. The mutation operator

performs a random change over some portion of the population to extend the region search

over the solution space.

Crossover

The crossover operator applies a combination process in a set of selected population individuals.

Given two parents (derivation trees) in this specific domain, randomly choose one of their

nodes that both parents have a node in common. The branches are exchanged, creating a

new individual. Figure 3.3 shows a simple crossover process example. The crossover operator
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is described in detail in the algorithm 5.
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Figure 3.3: Crossover operator over two individuals. Nodes with blue backgrounds
represent common nodes. The nodes with dotted lines indicate the selection over the

common nodes. Child 1 and child 2 are the resulting individuals of crossover operation.
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Algorithm 5: Proposed crossover operation in 3GP

Data: Parents set P = {ind1, ind2, . . . , indn}
Result: Offsprings set O

1 O = ∅
2 for all pair (Pa, Pb) parents in P do
3 a = copy(Pa)
4 b = copy(Pb)
5 Na = get the nodes in parent a tree.
6 Nb = get the nodes in parent b tree.
7 if Na ∩Nb <> ∅ then
8 Select a random common node between the parent trees a and b.
9 Nc = random(Na ∩Nb)

10 Select a random node Nc in the parent tree a.
11 sna = select(a,Nc)
12 Select a random node Nc in the parent tree a.
13 snb = select(b,Nc)
14 Insert the selected node sna in the subtree created by b in the node snb.
15 a[sna] = subtree(b, snb)
16 Insert the selected node snb in the subtree created by a in the node sna.
17 b[snb] = subtree(a, sna)
18 Append the newly created trees to the array of Offsprings O.
19 O = O ∪ (a, b)

20 end

21 end
Output: The offsprings set O

Mutation

The mutation operator performs a random change to selected individuals that bring the

possibility to cover a broader range on the search space, that it could be better in terms

of the fitness value (and therefore, a better solution). Figure 3.4 shows a simple mutation

process in an individual. Given an individual to perform a mutation operation, a randomly

generated individual has to be created (random derivation tree). Then a crossover process

operates over these two individuals, creating a new set of individuals. Algorithm 6 details

the mutation operator.
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Figure 3.4: Mutation operator

Algorithm 6: Mutation operation algorithm in 3GP

Data: Individuals to mutate set M = {ind1, ind2, . . . , indn},
Context-Free Grammar: CFG
Delta mutation: δm
Result: Offsprings set O

1 O = ∅
2 for all individual ind in M do
3 ni = get the nodes in the individual tree ind.
4 R = ∅
5 while (ni ∩ nodes(R)) ̸= ∅ do
6 Generate a random derivation tree based on the grammar.
7 R = generate(CFG, 1, δm)

8 end
9 Perform a crossover operation between the random generated tree R and the

individual ind.
10 O = O ∪ Crossover(R, ind)

11 end
Output: The offsprings set O
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3.2 Problem definition

For a better conceptualization of the problem that this work aims to solve, suppose a fuzzy

set hot designed by an expert. After some optimization process, their initial parameters are

changed, but the label is not. To the expert, their perception of hot, in a particular domain

application, is represented by the initial membership function (defined by their parameters).

Still, the semantic meaning of the label may not correspond to the new membership function

(after some optimization process). Figure 3.5 shows this idea, where X represents the

unknown label that has to be found. This label is getting the proposed methodology.
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Figure 3.5: Example of an unknown label of the fuzzy set after some optimization
process.

The principal advantages of automatically labeling fuzzy sets using the primary terms,

those that compose the initial fuzzy sets’ labels, are to create an interpretable description

using natural language based on prior expert knowledge.

The proposed methodology aims to resolve the problem of finding the best hedge chain

to approximate a fuzzy set modified by some process (e.g., by optimization) from an initial

fuzzy set defined by the expert domain. A similarity measure compares the initial fuzzy set

(S) modified by hedge transformation function (h) and the fuzzy set in which its parameters

have changed due to some process (T ). The formal definition is shown in 3.4.
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g = argmax
θ

SIM(h(S,Θ), T ) (3.4)

Where Θ denotes the universe of linguistic modifiers, h is the hedge transformation

function, and SIM is a function that measures the similarity between the source (S) and

target (T ) membership functions. The optimum θ contains an ordered set of chained hedges

for dilation, contraction, negation or shift operations; all the linguistic terms have arbitrary

related values for one of each operation and must be generated by a context-free grammar.

The hedge transformation function performs the corresponding operation on the membership

function by the assigned values on each term. The result can be treated as a new fuzzy set

where is composed of a hedge chain (θ∗) applied to the initial fuzzy set (S).

The task of finding the best hedge chain overall combinations of linguistic modifiers is

considered to be following grammar to avoid incoherent composition such as “less more below

above hot”. This problem relies on the Grammar-Guided Genetic programming to perform

an evolutionary heuristic search of hedge chains that correspond to an established grammar,

designed to avoid inconsistent combinations of linguistic modifiers.

3.3 Unary hedge transformation over fuzzy sets

Hedge transformation function

This work defines a hedge transformation function h(x) (equation 3.5) that modifies a

membership function with linguistic modifiers such as well known terms: “very”, “more or

less”, “little”, etc. Moreover, in this function are considered hedges that shift the membership

function on the domain: “below”, “upon”, etc. The equation’s parameters are p, q, r; that

modify the concentration or dilation, certainty degree and the shift over domain respectively.
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h(µA, p, q, r) = qµA(x− r)p (3.5)

Where µA is a membership function of a fuzzy set A; r ∈ R is the domain shift proportion

of the fuzzy set. p ∈ R is an exponent that modifies the structure of the membership function;

if p < 1, then it applies an operation of dilation; otherwise, when p > 1, applies an operation

of concentration. q ∈ [0, 1] is a certainty modifier, if q < 1 the maximum value of the

membership function µA(xmax) = q.

It is considered a set of linguistic hedges that can shift the support of the membership

function over the domain of the fuzzy set. This shift domain term (r) is characterized as a

proportion of the domain range that the membership function shifts.
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Figure 3.6: Example of shift domain and dilation operation over a fuzzy set.

It is considered a term that modifies the certainty or precision (q) that can limit the

maximum value of some membership function. It could provide another dimension of flexibility

to represent the modeling of human thinking more accurately.

Each hedge has an associated tuple of values (arbitrarily selected by the expert) that are
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evaluated by the hedge transformation function, for example the linguistic modifier very has

the values q = 1, r = 1.50, p = 2. The selected values fo each linguistic term is shown in

table 4.1, their visual transformation is shown in figure 3.7.

This work considers three kinds of hedge chains: i) only refers to the precision aspect of

the membership function (dilation and concentration operations); ii) sequence of linguistic

modifiers referring only to the shift operation (ex. “very above hot”); iii) a mixed hedge

chain, that applies the corresponding operation to the precision and the shift operations, to

identify the segments (that belong to certainty or shift operations) on the chain is used the

separator called “certain that X is”, in this configuration, it can modify both certainty and

shift, such as in the following hedge chain “more-or-less certain that X is very above”,

every linguistic modifier before the separator are evaluated as i), and those that are after it,

are evaluated as ii), (see figure 3.6).

The values associated with the linguistic terms are not applied in all scenarios. The shift

value (r) only applies when the hedge chain corresponds to the shift operation, which means

in those that referred to the certainty aspect (dilation and concentration operations), the

shift value is not considered.

Figure 2.4 shows the general flow of the methodology, where the objective is to maximize

the defined problem definition in equation 3.4, where the pseudo-best hedge chain is found

considering the similarity function described in the equation 3.6. Each hedge chain candidate

is evaluated in the fitness function to get their aptitude score. Intuitively, the greater the

value is, the better performance is achieved in terms of similarity (or interpretability). As a

result, the selected top k candidates that better maximize the fitness function are obtained.

The algorithmic view of the methodology is presented in algorithm 7.
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Figure 3.7: All hedge transformations. Blue line represents the original membership
function and orange dotted line represents the transformed membership function by the

linguistic hedge.
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Algorithm 7: Grammar-Guided Genetic Programming Algorithm

Data: Source Fuzzy Set: S,
Target Fuzzy Set: T ,
Number of generations: g,
Mutation rate: mr,
Selection percentage: s
Number of best top k candidates
Tolerance error: err
Result: Best hedge candidates (R) to approximate hedges(S) → T

1 i = 0;
2 R = ∅
3 P = Generate an initial population;
4 while i < g and max(F) < err do
5 F = fitness(P ;S, T );
6 S = Select the top s best candidates based on F ;
7 C = crossover(S);
8 M = mutate(C,mr);
9 P = merge(M, C,P);

10 i = i+ 1

11 end
Output: The best k candidates of set R
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Fitness function

The presented optimization problem aims to find the (pseudo-)best set of hedges that approximate

an initial fuzzy set with a linguistic term defined by the expert to some fuzzy set where its

parameter design is changed. A fuzzy similarity measure is used as a criterion for the selection

of best hedges candidates, the fuzzy similarity measure (equation 3.6) presented in (Pappis

and Karacapilidis, 1993). The fuzzy similarity value refers only to the accuracy aspect of

the approximation. The proposed fitness function also considers the “interpretability” of the

hedge chain. This term reflects how easily the expert can understand the solutions in this

work. In terms of i) fewer terms are easier to read the hedge chain; and ii) as fewer linguistic

modifier repetitions occur, the better is the solution.

The function that measures how well structured is the hedge chain (hs) is presented in

3.7. Where the argument hedges corresponds to a hedge chain candidate, it can be defined

as an ordered set of terms, fh refers to a frequency vector of each term that belongs to it.

fs(A,B) =
A
⋂
B

A
⋃
B

=

∑N
i min(µA(xi), µB(xi))∑N
i max(µA(xi), µB(xi))

(3.6)

hs(hedges) =
1

(f⊤
h · fh)( length(hedges)2

)
(3.7)

The fitness function proposed involves a fuzzy similarity function, the repeated terms,

and the length of the hedge modifier (that can be composed of many linguistic terms).

Formally we define the following fitness function:

fitness(hedges;S, T ) = (1 + β2) · fs(h(S, hedges), T ) · hs(hedges)
(β2 · fs(h(S, hedges), T ) + hs(hedges)

(3.8)
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Where fitness(hedges;S, T ) is the function that the system has to maximize, the argument

hedges is a set containing the hedge chain to apply on the Source membership function (S)

T is the target membership function. The function fs returns the similarity value between

two given membership functions. The function hs refers to the hedge score, linguistically

measures how well is composed a hedge (it is defined as a set of terms), and h is the hedge

transformation function that applies the corresponding operations to some fuzzy set given a

hedge chain (in this case hedges). The fitness function is a general F score, where β weighs

fuzzy similarity over hedge score if β < 1. In the opposite direction, weights hedge score over

fuzzy similarity if β > 1. It might be more relevant to get high accuracy in some application

domains than the hedge’s terms structure.

Individual encoding

Each individual is encoded by the context-free grammar Ghedges and they are composed by

a set of linguistic hedges that computes concentration, dilation, and shift operations. There

is a separator “certain that X is” which delimits which linguistic hedges apply just to the

uncertainty or the shift distance over its domain of the fuzzy set. In this work just are

considered concentration and dilation operations to modify their uncertainty (imprecision).

A complete sentence that involves concentration, dilation and shift operation, such as: “more-

or-less certain that X is very above” is showed in figure 3.6.

The context-free grammar Ghedges, that guides the construction of hedge chain candidates,

constructs the three considered kinds of modifiers: i) certainty modifier, ii) shift modifier and

iii) hedge chains with certainty and shift modifiers. The context-free grammar is described

as Ghedges = (V,Σ, R, S), where

V = {<PROPOSITION>, <TRUTH-PROP>, <SHIFT-PROP>, <SHIFT-PLUS>,

<SHIFT-MINUS>, <MODIFIER>, <STACK-MOD>, <SHIFT-MOD>, <PLUS-MOD>,
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<MINUS-MOD>, <SPLUS-MOD>, <SMINUS-MOD>, <COMPLEMENT>, <NEG>}

Σ = {above, more, less, little, . . . }

S = {<PROPOSITION>}

R =

⟨PROPOSITION ⟩ ::= ⟨COMPLEMENT ⟩ | ‘Is’ ⟨TRUTH-PROP⟩ ‘certain that’ ⟨SHIFT-PROP⟩

⟨TRUTH-PROP⟩ ::= ⟨MODIFIER⟩ ⟨TRUTH-PROP⟩ | ⟨MODIFIER⟩

⟨SHIFT-PROP⟩ ::= ⟨SHIFT-PLUS ⟩ | ⟨SHIFT-MINUS ⟩

⟨SHIFT-PLUS ⟩ ::= ⟨SPLUS-MOD⟩ ‘above’ | ⟨MODIFIER⟩ ⟨SPLUS-MOD⟩ ‘above’ |

‘above’

⟨SHIFT-MINUS ⟩ ::= ⟨SMINUS-MOD⟩ ‘below’ | ⟨MODIFIER⟩ ⟨SPLUS-MOD⟩ ‘below’

| ‘below’

⟨MODIFIER⟩ ::= ⟨PLUS-MOD⟩ | ⟨MINUS-MOD⟩ | ⟨STACK-MOD⟩ ⟨SPLUS-MOD⟩

⟨MODIFIER⟩ | ⟨SPLUS-MOD⟩ ⟨MODIFIER⟩ | ⟨STACK-MOD⟩ ⟨SMINUS-MOD⟩

⟨MODIFIER⟩

⟨STACK-MOD⟩ ::= ⟨STACK-MOD⟩ ⟨STACK-MOD⟩ | ‘very’ | ‘<BLANK>’

⟨SHIFT-MOD⟩ ::= ⟨SMINUS-MOD⟩ | ⟨SPLUS-MOD⟩ | ⟨MODIFIER⟩

⟨PLUS-MOD⟩ ::= ‘absolutely’ | ‘extremely’ | ‘definitely’

⟨MINUS-MOD⟩ ::= ‘slightly’ | ‘more-or-less’ | ‘insignificant’ | ‘sort-of’ | ‘fairly’

| ‘somewhat’ | ‘likely’

⟨SPLUS-MOD⟩ ::= ⟨PLUS-MOD⟩ | ‘more’

⟨SMINUS-MOD⟩ ::= ⟨MINUS-MOD⟩ | ‘less’ | ‘little’

⟨COMPLEMENT ⟩ ::= ⟨NEG⟩ ⟨TRUTH-PROP⟩ | ⟨NEG⟩ ⟨SHIFT-PROP⟩

⟨NOT ⟩ ::= ‘not’
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3.4 Methodology for building Interpretable Mamdani

type Neuro-Fuzzy Model

3.4.1 Knowledge base construction

The Fuzzy inference system’s construction process consists of domain application fuzzification

and fuzzy rules selection. In the domain application fuzzification, each input is fuzzified with

Gaussian membership functions equally distributed over a domain. Also, it can be designed

by an expert or by clustering.

The initial knowledge base construction must be interpretable due to linguistic modifiers

that will adjust their fuzzy sets. If the membership functions are not easily interpretable from

the start, they won’t be interpretable with the hedge chain applied to them. The following

properties are considered to create in an automated way an initial knowledge base that aims

to be as interpretable as possible (Gacto et al., 2011): i) Completeness or Coverage, which

refers that a membership function should cover every element in the universe of discourse; ii)

Normalization, that refers that at least one element in the universe of discourse should have

its membership value equal to one; iii) Distinguishability, states that every linguistic term

attached to the fuzzy set of a fuzzy variable should have a relevant semantic meaning and

easily discriminable from others; iv) Complementarity, this property refers that the sum of

membership values for every element in the Universe of Discourse should be close to one.

Every feature in the input space has to be fuzzified, with the primary goal of building an

interpretable knowledge base that satisfies the previous properties. According to the elements

that the human easily deals with for decision making (Miller, 1956), a low number of fuzzy

sets is used, in the range 5±2, Gaussian membership functions (eq. 3.9) (Wang et al., 1992),

and equally distributed on the universe of discourse.
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fg(x;m,σ) = e−(x−m
2σ

)2 (3.9)

Where x ∈ R is the element to be fuzzified, m is the mean and the core of the membership

function, σ is the standard deviation of the function.

The generation of fuzzy rules is a combinatorial problem if all possible fuzzy sets for each

input are selected. To avoid this problem, the method proposed in (Wang and Mendel, 1992)

selects only a subgroup of the possibilities. All the instances of the dataset set are evaluated

in the initial fuzzy sets; the top k fuzzy sets with higher activation value for each output are

selected (figure 3.8).

A dataset is characterized by a set of tuples {(xi,yi)}Qi=0, which xi is the input vector,

and yi is the output vector; the value Q is the number of instances that conform the dataset;

an instance is an element of the dataset that is referred by the index value i. For every pair,

instance i and fuzzy variable j, the maximum membership value is selected.

mi,j
x = max{µAj

1
(xi), . . . , µAj

n
(xi)} (3.10)

In which mi,j
x is the maximum membership value in the set M(x) of fuzzy sets attached to

the fuzzy variable j. The compatibility degree ϕi denotes the strength of the rule composition

for each instance.

ϕi =

|xi|∏
j=1

mi,j
x (3.11)

Where ϕi is the compatibility grade value of the fuzzy membership values on the instance i,

the cardinality of an instance |xi| is the number of attributes in the input, for each attribute in

the dataset, a fuzzy variable is defined with its domain and fuzzy sets attached to a linguistic
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Domain application fuzzification
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Top  rules for each consequent with maximum membership values in fuzzy sets
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Figure 3.8: The Wang&Mendel procedure selects the k most relevant rule composition
by membership belongingness. A and B are fuzzy variables of input feature fuzzification
in the antecedent and Y to the consequent. Each fuzzy variable is evaluated by instance,
and the higher membership value in the fuzzy set is selected to create a proposition. For

instance 1, the rule “IF A is low and B is med THEN Y is high” is selected
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term.

The top k composition for each class p is carried out to select the candidate rules to

generate the neuro-fuzzy model. Also, the number of fuzzy rules that belong to an output

class p can vary for each class. These rules are selected by the maximum firing strength value

αi, which is better fitted to the domain fuzzification.

Rp = argmax
R′⊆{(max

A1
i

,...,max
A
j
i

)}Ni=0,|R′|≤k

{ϕi|yi = p}Ni=0 (3.12)

A fuzzy rule is characterized by a n-tuple (A1, . . . , A|xi|), n = |xi|, in which each element

is a fuzzy set Aj that belongs to a universe of a fuzzy variable (Aj ∈ M(x)), denoted by the

identifier j; the logical operator by default is set to and (∗̃). In the form of Zadeh’s fuzzy

rule, it can be read as “ IF xi
1 is A1 and . . . and xi

n is An THEN yi is Gp ”.

3.4.2 Neuro-fuzzy model optimization

Once the knowledge base is designed, some optimization methods can adjust their membership

function parameters to fit the data better.

A neuro-fuzzy model is created from the structure of the fuzzy inference system to

perform an optimization process of the membership functions parameters. This architecture

comprises five layers: input, fuzzification, inference, implication, and defuzzification layer.

The connections between the layers are not fully connected, as is common in the traditional

neural network architecture. In the fuzzification layer are only connected the membership

functions belonging to the input domain. Also, they are not completely connected neurons

in the implication layer, as Zadeh’s fuzzy rule fixes their connections. Figure 3.9 shows a

visual representation of a Mamdani-type neuro-fuzzy model.
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Figure 3.9: The Mamdani Neuro-fuzzy representation is composed by a non-fully
connected 5-layer artificial neural network, all the computations corresponds to the

involved operations in a Mamdani-type fuzzy inference system for q inputs, m rules, p
fuzzy sets in consequent with Center-of-Sets defuzzification method. C(Gi) denotes the

centroid of consequent Gi.
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The parameters to optimize the model belong to the antecedent part of the fuzzy rule

once the parameters are selected to achieve better performance to adjust the data.

The neural architecture is shown in the figure 3.9. The first layer is non-fully connected

among neurons that represent the fuzzification process.

fAj
k(xi) = µAj

k
(xi) (3.13)

Where Aj
r ∈ Vk is a fuzzy set that belongs to the fuzzy variable Vk, the domain of each

fuzzy variable is shared by its corresponding attribute domain in the dataset. Only the

membership functions directly related to the attribute are evaluated by the input value,

which results in a semi-connected layer.

The inference layer is also a non-fully connected layer that generates a firing strength

value. The implication operation is calculated a t-norm (∗̃) as a product.

αl(xi) = T p
r=1f

Ar(xi) (3.14)

The implication layer performs a normalization operation that conforms a step to the

defuzzification process.

ᾱl(xi) =
αl(xi)∑L
j=1 α

j(xi)
(3.15)

After the normalization process, for each rule that has a consequent (Gi), a ∗̃ as the

product is calculated.

zj(xi) = Sr
l=1{cj × ᾱl(xi)} (3.16)
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Where cj corresponds to the centroid of the consequent value Gj that multiplies the firing

strength of each r-rule associated with this consequent; if the membership function that

describes the consequent is a Gaussian function, then cj is represented by the mean value.

The center-of-set defuzzification method is used to get the crisp output value from the

inference process. This method is implicit in the neuro-fuzzy model; due to the consequent

part being designed by Gaussian membership functions, the calculation can be expressed as:

ŷCOS(x′) =

∑m
l=1 COG(Gl)αl(x′)∑m

l=1 α
l(x′)

=

∑m
l=1 c

lαl(x′)∑m
l=1 α

l(x′)
(3.17)

Which COG is the center of gravity of the membership function, m is the number of

fuzzy rules in the FIS, x′ is an arbitrary input crisp value to perform the inference and

defuzzification process; cl is the center of the lth consequent set; αl is the firing level of the

rule.

The output layer performs an aggregation operation of the resulting implications. This

aggregation operation is perform by a s-norm (+̃) as a sum.

ŷi = Sp
j=1z

j(xi) (3.18)

In where p is the number of consequents that are involved in the fuzzy inference system

design.

This neuro-fuzzy model adjusts its parameters to adjust a given dataset better. The sum

of square errors (sse) is used to measure the error of the signal.

sse(y, ŷ) =
N∑
i=1

(yi − ŷi)
2 (3.19)
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Where N is the number of instances on the batch, y is the target value, and ŷ is the

predicted value by the model.

The trainable parameters on the neuro-fuzzy model are the design parameters of the fuzzy

sets; if Gaussian functions define the membership functions, then the trainable parameters

are the mean and σ values, where σ > 0.

A gradient descent optimization method is applied to find the pseudo-best parameters.

The learning rule is shown in equation 3.20

θnew = θold − η∇E(θold) (3.20)

Where θ are the parameter vector values; E(θ) is the gradient of the error value of the

model with the parameters θ; η is the learning rate value in 0 < η < 1.

The hyper-parameters of the model are:

� Number of fuzzy sets for each attribute: each attribute in the dataset is represented

by a fuzzy variable, so the number of fuzzy sets in each fuzzy variable has to be selected.

� Number of rules: the selection of the antecedents, that is, the combination by a

t-norm operation of fuzzy sets of different fuzzy variables, is an exponential growth

problem. Because of that, this parameter has to be carefully selected; lower values are

preferred. This parameter is related to the value k of the Wang and Mendel procedure,

described in section 3.4.1.

� Learning rate value: this value scales the directional vector generated by gradient

calculation; as the lower the value is, the better search is but slower. Usually, the

default value is set to a value of 0.01.

� Batch size: the selection of dataset partition to train the model is set by this value.
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� Epoch number: an epoch represents an entire iteration overall dataset (train dataset

partition).

� Goal error value: is a threshold value to consider to stop the training process.

3.4.3 Linguistic granule optimization for semantic enhancement of

pseudo-optimal knowledge base using binary relationships

After the optimization process of the fuzzy inference system, the initial parameters of the

fuzzy sets are changed. Therefore, the initial meaning of the linguistic term attached to

the membership function has also changed. To recover the semantic meaning, a collection

of linguistic terms has to find it that describes the new fuzzy sets form that better adjust

the data. However, in some way, the new linguistic labels have to be linked to the prior

knowledge, implicitly in the fuzzy inference system design, to maintain the context.

The proposed evolutionary methodology is used to find the best linguistic modifiers to

adjust the previous membership function form to the optimized ones. The linguistic hedge

types considered in this work to transform fuzzy variables are identity, unary, and binary.

Here, a grammar is proposed to generate those linguistic hedges, where the pseudo best

candidates are searched by a genetic algorithm guided by grammar.

Hedge transformation function

A unary hedge transformation functions h(x) is used to perform modifications on the membership

function. This function can effectuate concentration, dilation, and translation operations.

h(A; p, r, n) =


µA(x− r)p if n = 0

µĀ(x− r)p if n = 1
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Where A = {(x, µA(x))|µA ∈ [0, 1]} is a fuzzy set, r ∈ R, n ∈ {0, 1}, and p ∈ R.

Where r is a shift domain value; n is a binary value, if it is zero, the modification

operates with the original membership function; otherwise, apply to its complement; p is

an exponential value, where 0 < p < 1 generates a dilation modification, if p > 1, then a

concentration operation is applied to the membership function.

For binary hedge chains, a binary hedge function binhedge((vj, vk), (h1, h2, . . . ) that carry

out the binary operations over two fuzzy sets vj, vk is proposed.

binhedge((vj, vk);H) =



vleftj

⋃
vrightk if H relates to BETWEEN operation

vj
⋃

vk if H relates to OR operation

v̄j
⋃

v̄k if H relates to NEITHER operation

h(vj;Hp,Hr,Hn) if H relates to UNARY operation

Where H is the universe of hedge chains, vleftj refers to all membership values of vj that

are at the left of the core; in the opposite direction vrightk . In figure 3.10 is shown a visual

representation of the binary hedge function between over two fuzzy sets.

To find the pseudo-best hedge chain that transforms the initial knowledge base to the

optimized one is performed by a Genetic Algorithm. Individuals are derivation trees of the

proposed grammar that can change each fuzzy set of a given fuzzy variable. The initial

knowledge context is considered to describe the newly arisen concepts (adjusted parameters’

design of membership functions). The proposed grammar can be regarded as upon two fuzzy

sets as context to build new linguistic descriptors. The selection of these two candidates

is based on the distance by the core of membership functions. When the closest two fuzzy
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Figure 3.10: The proposed binary linguistic hedge between is applied over the two initial
fuzzy sets Cold and Hot

sets are selected, they are given to the genetic optimization algorithm to find the best hedge

individuals to describe the new concept better, considering their similarity. The algorithm

to describe this process is shown in algorithm 8.

Algorithm 8: Grammar-based Optimization for Interpretable Neuro-fuzzy model.

Data: Initial Fuzzy Variable V , Optimized Fuzzy Variable V∗, Hedge candidate set
H

Result: Best hedge candidates to approximate hedge(V) → V∗

1 i = 0;
2 while there is an v∗ ∈ V∗ without label do
3 Find the pair (vj, vk) ∈ V , closest to v∗i by the mf’s core;
4 Perform grammar-based optimization of (h1, h2, . . . ) ∈ H such that

binhedge((vj, vk), (h1, h2, . . . )) ≈ v∗i ;
5 i = i+ 1

6 end

A grammar-based genetic algorithm is used to find the best coverage chain candidates,

these algorithms not only represent each individual as a graph, but their structure is constrained

by a context-free grammar (Manrique et al., 2009). This property allows it to generate

only interpretable linguistic modifiers. The processes that are defined in the algorithm are

described in algorithm 9.
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Algorithm 9: Grammar-Guided Genetic Programming Algorithm

Data: Tuple of initial fuzzy sets: (vj, vk) ∈ V ,
Unknown fuzzy set: v∗i ,
Number of generations: g,
Mutation rate: mr,
Selection percentage: s
Number of best top k candidates
Result: Best hedge chain individuals (IH) with highest similarity score

sim(hedges([vj, vk], IH), v
∗
i )

1 i = 0;
2 IH = ∅
3 P = Generate an initial population;
4 while stop criteria are not reached do
5 F = sim(hedges([vj, vk],P), v∗i );
6 T = top(F , s); Select the top s best candidates based on the aptitude of F

individuals.
7 C = crossover(T ); Perform crossover by compatibility nodes on the population.
8 M = mutate(C,mr); Generate a random individual then apply crossover to mr

percentage of population.
9 P = M+ C + P ; Merge individuals to create a new population.

10 i = i+ 1

11 end
12 IH = top(P , k) select top k best individuals in population P .

Output: The best k individuals of set IH
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Fitness function

The formalization of hedge function that is considered to operate over the linguistic variables

is described as follows:

fhedge : V ×H → X (3.21)

Where V is the fuzzy variable to transform, H is the set of all hedge chains that the

grammar can generate, and X is the fuzzy set domain.

The similarity function, described in (Pappis and Karacapilidis, 1993) (equation 3.22), is

used to measure how well the old fuzzy sets with linguistic transformation approximate the

new ones.

sim(A,B) =
A
⋂
B

A
⋃
B

=

∑N
i min(µA(xi), µB(xi))∑N
i max(µA(xi), µB(xi))

(3.22)

Where A and B are fuzzy sets, µA and µB their respective membership functions; The

higher the similarity between fuzzy sets, the closer the resulting value is to 1; otherwise, the

value is closer to 0.

Individual encoding

In the proposed context-free grammar, three kinds of relationships based on their arity

are considered. The association relationships in this context are treated as transformation

functions with hedges, so the three main categories are binary hedge chain, unary hedge

chain, and identity. Some examples of the hedge chain generated by the proposed grammar

are listed as follows.

Unary hedge chain:
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� Extremely A2

� Kind of A1

� Higher than Very A1

Binary hedge chain:

� Between A1 and A2

� Lower than Between A1 and A2

� Higher than Very A1 and A2

� Neither Very A1 nor Exactly A2

Identity hedge chain:

� A1, A2

The elements A1 and A2 represent the fuzzy sets that are involved in the hedge chain. In

the binary hedge chain category, both elements appear. On the other hand, the rest of the

hedge chain only have one of them associated. It is important to notice that when the hedge

chain is put in context, the linguistic terms attached to the fuzzy sets replace the generic

notation Ai.

The free-context grammarG part of each linguistic variable is described asG = (V,Σ, R, S),

where

V= { ⟨PROPOSITION⟩, ⟨MOD BINARY HEDGE CHAIN⟩, ⟨BINARY HEDGE CHAIN⟩,

⟨UNARY HEDGE CHAIN⟩, ⟨UNARY HEDGE CHAIN1⟩, ⟨UNARY HEDGE CHAIN2⟩,

⟨SUPERLATIVE HEDGE CHAIN⟩, ⟨HEDGE CERTAINTY1⟩, ⟨HEDGE⟩, ⟨HEDGE1⟩, ⟨HEDGE2⟩,

⟨NEG⟩, ⟨UNARY HEDGE CHAIN1 NN⟩, ⟨UNARY HEDGE CHAIN2 NN⟩, ⟨HEDGE1 NN⟩,
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⟨HEDGE2 NN⟩ }

Σ= {"Lower than" , "Higher than" , "Between" , " and" , " or" , "Neither" , "

nor" , "Upper than" , "Exactly" , "More-or-less" , "Kind of" , "Very" , "Extremely"

, "<A1>", "<A2>", "not", . . . }

S = {⟨PROPOSITION ⟩}

⟨PROPOSITION ⟩ ::= ⟨MOD BINARY HEDGE CHAIN ⟩

| ⟨UNARY HEDGE CHAIN ⟩

| ⟨HEDGE ⟩ ⟨MOD BINARY HEDGE CHAIN ⟩ ::= Lower than ⟨BINARY HEDGE CHAIN ⟩

| Higher than ⟨BINARY HEDGE CHAIN ⟩

| ⟨BINARY HEDGE CHAIN ⟩

⟨BINARY HEDGE CHAIN ⟩ ::= Between ⟨UHC HEDGE1 ⟩ and ⟨UHC HEDGE2 ⟩

| ⟨UHC HEDGE1 ⟩ or ⟨UHC HEDGE2 ⟩

| Neither ⟨UNARY HEDGE CHAIN1 NN ⟩ nor ⟨UNARY HEDGE CHAIN2 NN ⟩

⟨UNARY HEDGE CHAIN ⟩ ::= ⟨UNARY HEDGE CHAIN1 ⟩

| ⟨UNARY HEDGE CHAIN2 ⟩

| ⟨HEDGE ⟩

⟨UNARY HEDGE CHAIN1 ⟩ ::= Upper than ⟨HEDGE CERTAINTY1 ⟩

| Lower than ⟨HEDGE CERTAINTY1 ⟩

| Exactly ⟨HEDGE1 ⟩

| More-or-less ⟨HEDGE1 ⟩

| Kind of ⟨HEDGE1 ⟩

| Very ⟨HEDGE1 ⟩

| Extremely ⟨HEDGE1 ⟩
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⟨UNARY HEDGE CHAIN2 ⟩ ::= Upper than ⟨HEDGE CERTAINTY2 ⟩

| Lower than ⟨HEDGE CERTAINTY2 ⟩

| Exactly ⟨HEDGE2 ⟩

| More-or-less ⟨HEDGE2 ⟩

| Kind of ⟨HEDGE2 ⟩

| Very ⟨HEDGE2 ⟩

| Extremely ⟨HEDGE2 ⟩ ⟨SUPERLATIVE HEDGE CHAIN ⟩ ::= Highest

| Lowest

⟨UHC HEDGE1 ⟩ ::= ⟨UNARY HEDGE CHAIN1 ⟩

| <A1>

⟨UHC HEDGE2 ⟩ ::= ⟨UNARY HEDGE CHAIN2 ⟩

| <A2>

⟨HEDGE CERTAINTY1 ⟩ ::= <A1>

| Exactly ⟨HEDGE1 ⟩

| More-or-less ⟨HEDGE1 ⟩

| Kind of ⟨HEDGE1 ⟩

| Very ⟨HEDGE1 ⟩

| Extremely ⟨HEDGE1 ⟩

⟨HEDGE CERTAINTY2 ⟩ ::= <A2>

| Exactly ⟨HEDGE2 ⟩

| More-or-less ⟨HEDGE2 ⟩

| Kind of ⟨HEDGE2 ⟩

| Very ⟨HEDGE2 ⟩

| Extremely ⟨HEDGE2 ⟩

⟨HEDGE ⟩ ::= ⟨HEDGE1 ⟩

| ⟨HEDGE2 ⟩
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⟨HEDGE1 ⟩ ::= <A1>

| ⟨NEG⟩ <A1>

⟨HEDGE2 ⟩ ::= <A2>

| ⟨NEG⟩ <A2>

⟨NEG⟩ ::= not

⟨UNARY HEDGE CHAIN1 NN ⟩ ::= Upper than ⟨HEDGE1 NN ⟩

| Lower than ⟨HEDGE1 NN ⟩

| Exactly ⟨HEDGE1 NN ⟩

| More-or-less ⟨HEDGE1 NN ⟩

| Kind of ⟨HEDGE1 NN ⟩

| Very ⟨HEDGE1 NN ⟩

| Extremely ⟨HEDGE1 NN ⟩

| ⟨HEDGE1 NN ⟩

⟨UNARY HEDGE CHAIN2 NN ⟩ ::= Upper than ⟨HEDGE2 NN ⟩

| Lower than ⟨HEDGE2 NN ⟩

| Exactly ⟨HEDGE2 NN ⟩

| More-or-less ⟨HEDGE2 NN ⟩

| Kind of ⟨HEDGE2 NN ⟩

| Very ⟨HEDGE2 NN ⟩

| Extremely ⟨HEDGE2 NN ⟩

| ⟨HEDGE2 NN ⟩

⟨HEDGE1 NN ⟩ ::= <A1>

⟨HEDGE2 NN ⟩ ::= <A2>

A visual example of the resulting individuals, starting with an initial fuzzy variable input1

(see figure 3.11a), after a process of optimization, some changes may affect parameters’ design
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(a) Initial fuzzy variable design.
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(b) Fuzzy variable after optimization.
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(c) Reconstructed by automatically hedge chain generation

Figure 3.11: In a) All their fuzzy sets are equally distributed and interpretable. In b)
Its initial design changed due to the parameter tuning process, hence the semantic

meaning. In c) is the reconstructed fuzzy variable from the initial to the optimized one by
automatically hedge chain generation.

(figure 3.11b). The goal of the proposed methodology is to approximate the optimized model

by initial knowledge context using hedge chains (see figure 3.11c).



Chapter 4

Experimentation and results

4.1 Semantic enhancement of fuzzy sets using unary

hedge transformations

The presented experimentation comprises two case studies; 1) Finding the best set of hedges

to modify a fuzzy set to a target fuzzy set. Both membership functions are of the same kind.

2) Finding the best set of hedges to approximate a source fs to target fs where the membership

functions are of a different kind. The fuzzy set design was made by the FuzzSystem python

framework 1. NLTK python framework (Bird et al., 2009) was used for grammar processing,

transformation, and generation of derivation trees.

All cases propose a set of test scenarios in which they simulated the following: given

a fuzzy set by an expert, in this domain application is related to the concept “hot” (that

is called source membership function S). Some optimization process is applied to S that

its parameters change (that is called target membership function T ). The related initial

linguistic term “hot” does not represent the actual expert perception. In consequence, taken

1https://github.com/Raul-Navarro/fuzzy-framework
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as reference the initial expert conceptualization, the method searches the (pseudo-)best hedge

chain that approximates the initial fuzzy set (S) to the modified one (T ).

In section 3.4 membership function parametrization for Gaussian, Triangular, and Trapezoidal

are described. The linguistic terms used for both experiments are the same and arbitrarily

valued (table 4.1), however, the semantic meaning is correlated by the operations of dilation

and concentration, where the dilation operation refers to the increasing of uncertainty while

the concentration operation refers to the reduction of uncertainty.

In both experiment scenarios, a variation of the β value is performed. The β value

represents the importance of accuracy and “interpretability”; the lower the value, the more

focus on accuracy is given. In the opposite direction, the higher the β value is, the more

importance gives to the interpretability. Figure 4.5 shows the overall behavior of this

parameter in both cases, where the source and target membership functions are of the same

kind, and figure 4.6 shows the membership functions are of a different kind.
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Table 4.1: Summary of the proposed linguistic terms, certainty, shift, hedge modifier
value used in the cases studies.

Linguistic term certainty

modifier (q)

shift modifier

(r)

hedge modifier

(p)

very 1 1.50 2

minus 1 0.50 0.75

little 1 0.70 0.9

slightly 1 0.90 1.7

extremely 1 3 3.5

somewhat 1 0.80 0.3

very-very 1 3 4

absolutely 1 4.5 8

above 1 0.1 1

below 1 -0.1 1

more-or-less 1 0.70 0.5

definitely 1 1.70 5

insignificant 0.9 1 1

more 1 1.2 1

less 1 0.20 1

likely 1 0.95 0.8

fairly 1 0.85 0.6

sort-of 1 0.75 0.25

The parameters used in the optimization method using GGGP, described in section ??,

are presented in table 4.2.
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Table 4.2: Parameters used in the Grammar-Guided Genetic Programming in each step
of the methodology.

Parameter Value

Number of population individuals 100

Selection method Elitist

Selection percentage 30%

Mutation method One point (node)

Mutation percentage 20%

Generations 500

β value in the fitness function 0.01, 0.05, 0.1, 0.5, 0.7, 0.99

4.1.1 Finding linguistic modifiers for the approximation of same

kind membership functions

In this study case, we establish eight fuzzy sets, where its label represents the arbitrary

concept “hot” in some application domain, the selected membership functions are Trapezoidal,

Gaussian, and Triangular. Both source fuzzy set and target fuzzy set have the same membership

functions, and they only differ by their parameters.

The specific membership function parameters and the similarity obtained after the optimization

process, with value β = 0.01, that refers to an accuracy preference, are shown in table 4.3.

The same collection of the fuzzy sets are tested to find the best hedge candidates, but with

β = 0.99, which refers to an “interpretability” preference is shown in the table 4.4. The

parameters order in the table correspond to the design parameters described in section 3.4.

Trapezoidal [a, b, c, d], Triangular [a, b, c], and Gaussian [σ,m].
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Table 4.3: Case study results where the source and target membership functions are of
the same type, and β with value 0.01.

Membership

function

source MF

parameters

target MF

parameters

similarity hedge score

Trapezoidal MF [0, 1, 2, 3] [5, 6, 7, 8] 0.973 0.167

Trapezoidal MF [7, 8, 9, 10] [0, 1, 2, 3] 0.971 0.071

Gaussian MF [1, 0] [2, 2] 0.989 0.286

Triangular MF [0, 1, 2] [3, 6, 9] 0.536 0.200

Gaussian MF [1, 1] [5, 6] 0.936 0.125

Gaussian MF [5, 8] [1, 1] 0.926 0.020

Gaussian MF [5, 8] [8, 1] 0.995 0.042

Triangular MF [3, 7, 9] [1, 2, 3] 0.757 0.286

Mean 0.885 0.150

σ 0.161 0.104

σ2 0.026 0.011
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Table 4.4: Case study results where the source and target membership functions are of
the same type, and β with value 0.99.

Membership

function

source MF

params

target MF

params

similarity hedge score

Trapezoidal MF [0, 1, 2, 3] [5, 6, 7, 8] 0.600 1.000

Trapezoidal MF [7, 8, 9, 10] [0, 1, 2, 3] 0.891 0.500

Gaussian MF [1, 0] [2, 2] 0.794 1.000

Triangular MF [0, 1, 2] [3, 6, 9] 0.455 0.667

Gaussian MF [1, 1] [5, 6] 0.869 1.000

Gaussian MF [5, 8] [1, 1] 0.535 1.000

Gaussian MF [5, 8] [8, 1] 0.796 1.000

Triangular MF [3, 7, 9] [1, 2, 3] 0.754 0.400

Mean 0.712 0.821

σ 0.161 0.258

σ2 0.026 0.066

The visualization of the source, target, and resulting membership function for each case

is shown in the following images grouped by its membership function type: Trapezoidal mf )

figure 4.1; Gaussian mf ) figure 4.2 and figure 4.3; Triangular mf ) figure 4.4.

4.1.2 Finding hedges for the approximation of different kind membership

functions

In this study case, we establish eight fuzzy sets, where its label represents the arbitrary

concept “hot” in some application domain, the selected membership functions are Trapezoidal,

Gaussian, and Triangular. The source and target fuzzy sets have different kinds of membership
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Figure 4.1: Trapezoidal membership function in source and target fuzzy set either a)
and b). In a) the value of β is 0.05, which prioritizes accuracy over interpretability; and,

in b) the value of β is 0.99, which equilibrates accuracy and interpretability.

functions. This experiment aims to analyze how well can be approximated some membership

function to another of a different kind using the proposed methodology.
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Figure 4.2: Gaussian membership function in source and target fuzzy set, where the
target is shifted to the right respect to source in either a) and b). In a) the value of β is
0.05, which prioritizes accuracy over interpretability; and, in b) the value of β is 0.99,

which equilibrates accuracy and interpretability.

The specific membership function parameters for each source and target, as well as the

similarity obtained after the optimization process, are shown in table 4.5. The parameters
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Figure 4.3: Gaussian membership function in source and target fuzzy set, where the
target is shifted to the left with respect to source in both a) and b).In a) the value of β is
0.05, which prioritizes accuracy over interpretability; and, in b) the value of β is 0.99,

which equilibrates accuracy and interpretability.

order in the table correspond to the design parameters described in section 3.4. Trapezoidal

[a, b, c, d], Triangular [a, b, c], and Gaussian [σ,m].
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Figure 4.4: Gaussian membership function in source and target fuzzy set, where the
target is shifted to the left with respect to source in both a) and b). In a) the value of β is
0.05, which prioritizes accuracy over interpretability; and, in b) the value of β is 0.99,

which equilibrates accuracy and interpretability.
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Figure 4.5: The overall evolution of fitness value over generations with different β values
in the eight proposed experiments related to same membership function type.
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Table 4.5: Case study results where the source and target membership functions are of a
different type, and β with value 0.01

source MF target MF source MF

parameters

target MF

parameters

similarity hedge score

Trapezoidal

MF

Gaussian MF [0, 1, 3, 4] [2, 2] 0.761 1.000

Trapezoidal

MF

Gaussian MF [7, 8, 9, 10] [2, 2] 0.594 0.333

Trapezoidal

MF

Triangular

MF

[7, 8, 9, 10] [3, 6, 9] 0.696 0.286

Gaussian MF Trapezoidal

MF

[1, 0] [7, 8, 9, 10] 0.862 0.125

Gaussian MF Triangular

MF

[1, 1] [3, 6, 9] 0.899 0.250

Gaussian MF Triangular

MF

[3, 3] [3, 6, 9] 0.900 0.333

Triangular

MF

Trapezoidal

MF

[0, 1, 2] [7, 8, 9, 10] 0.816 0.019

Triangular

MF

Gaussian MF [3, 8, 9] [1, 1] 0.847 0.111

Mean 0.797 0.307

σ 0.107 0.302

σ2 0.012 0.091
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Table 4.6: Case study results where the source and target membership functions are of a
different type, and β with value 0.99

source MF target MF source MF

parameters

target MF

parameters

similarity hedge score

Trapezoidal

MF

Gaussian MF [0, 1, 3, 4] [2, 2] 0.761 1.000

Trapezoidal

MF

Gaussian MF [7, 8, 9, 10] [2, 2] 0.568 1.000

Trapezoidal

MF

Triangular

MF

[7, 8, 9, 10] [3, 6, 9] 0.599 0.667

Gaussian MF Trapezoidal

MF

[1, 0] [7, 8, 9, 10] 0.621 0.500

Gaussian MF Triangular

MF

[1, 1] [3, 6, 9] 0.688 1.000

Gaussian MF Triangular

MF

[3, 3] [3, 6, 9] 0.727 0.667

Triangular

MF

Trapezoidal

MF

[0, 1, 2] [7, 8, 9, 10] 0.767 0.500

Triangular

MF

Gaussian MF [3, 8, 9] [1, 1] 0.810 0.500

Mean 0.693 0.729

σ 0.088 0.235

σ2 0.008 0.055
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Figure 4.6: The overall evolution of fitness value over generations with different β values
in the eight proposed experiments related to different membership function type.

4.1.3 Sensitivity Analysis

This section provides a sensitivity analysis of the main parameter in this proposal, β, which

is the threshold value to give more importance to the interpretability (hedge function 3.7)

or the accuracy (similarity function 3.6). The positive real factor value of β assigns this

importance ratio value to the fuzzy similarity.

Diverse types of applications might have different requirements concerning interpretability.

Some critical decision-making systems should need to explain their outcome in a form that

the user can easily understand. Conversely, in non-critical applications, interpretability can

be secondary and focus on accuracy. The following analysis is to have an intuition of how
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the system would respond given a specific situation.

The sensitivity analysis is performed individually in each scenario following the previous

study cases. In the first case, the source and target fuzzy set belong to the same type of

membership functions; on the contrary, in the second case, they are not. The arbitrary

hyper-parameters such as population, selection percentage, mutation percentage, and max

generations remain the same as in the experimentation setup; table 4.5 shows the values for

these parameters.

Same type of membership functions

The source and target fuzzy set are of the same kind of membership functions in this setup.

The only change is in their design parameters. The convex membership functions used in this

experiment are Trapezoidal, Gaussian, and Triangular. Table 4.7 shows the model’s behavior

given different β values.

Table 4.7: Performances of the model, approximating membership functions of the same
type, in terms of similarity, hedge score, and fitness; with respect to the following values

of β: 0.01, 0.05, 0.1, 0.5, 0.7, 0.99.

β 0.01 0.05 0.10 0.50 0.70 0.99

similarity mean 0.885 0.858 0.838 0.789 0.755 0.712

σ 0.161 0.164 0.198 0.148 0.173 0.161

hedge score mean 0.150 0.297 0.382 0.746 0.871 0.946

σ 0.104 0.157 0.171 0.550 0.527 0.492

fitness mean 0.884 0.852 0.820 0.731 0.730 0.762

σ 0.160 0.164 0.188 0.149 0.171 0.209

Figure 4.7 shows that as the value of β increases, the hedge score (interpretability of hedge

chain) also does. The opposite occurs to the similarity score; it decreases. Depending on the
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Figure 4.7: System performance changes in terms of similarity and hedge score with
respect to the changes in β when the source and target membership functions are of the

same type.

necessity of the domain application, the domain expert should fix this β value to align with

the specifications. In the scenario described in the table 4.3 the slope for similarity is −0.16

and for hedge score 0.794 with p-values 2× 10−4 and 1× 10−3 respectively. The changes in β

affect interpretability (hedge score) more. It might be a desirable option to sacrifice a small

portion of accuracy in order to get a more understandable representation of the linguistic

modifiers.

Different type of membership functions

In this setup, contrary to the previous one, the source and target fuzzy set belong to different

types of memberships functions. Although they are the same type of functions, the objective

is to approximate a membership function of a kind to another of a different kind. Table 4.8

shows the model’s behavior given different β values.
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Table 4.8: Performances of the model, approximating membership functions of different
type, in terms of similarity, hedge score, and fitness; with respect to the following values

of β: 0.01, 0.05, 0.1, 0.5, 0.7, 0.99.

β 0.01 0.05 0.10 0.50 0.70 0.99

similarity mean 0.797 0.793 0.791 0.702 0.713 0.693

σ 0.107 0.107 0.106 0.132 0.113 0.088

hedge score mean 0.307 0.504 0.565 0.821 0.833 0.854

σ 0.302 0.609 0.584 0.530 0.519 0.507

fitness mean 0.796 0.790 0.783 0.685 0.702 0.718

σ 0.107 0.105 0.101 0.109 0.117 0.173
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Figure 4.8: System performance changes in terms of similarity and hedge score with
respect to the changes in β when the source and target membership functions are of

different kind.

Figure 4.8 supports the parameter β has a positive correlation to the hedge score and

a negative one with the similarity. In the scenario described in the table 4.5, the slope for

similarity is −0.117 and for hedge score 0.495 with p-values 5 × 10−3 and 0.01 respectively.

As in the first case, the changes in β affect interpretability more. In contrast, it would be

harder to improve the interpretability in this scenario without sacrificing the similarity score.
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This result could be expected due to the complexity to approximate memberships functions

of a different kind.
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4.2 Semantic enhancement of fuzzy variables using binary

hedge transformations

This experiment shows a fully automated way to build the initial knowledge base, optimize

design parameters in a neuro-fuzzy architecture, and the interpretable layer to explain new

fuzzy sets.

In the proposed experimental setup, two different steps are considered. The first step

is a data-driven neuro-fuzzy design and training process. The second step is to generate

the interpretable interface that creates a linguistical explanation of the fitted neuro-fuzzy

parameters. There are 16 datasets for classification tasks to measure how well the models

behave. The general description of each one of the datasets is presented in the table 4.10.

For each dataset, the proposed methodology performed the process as described in section

3.4. Also, different values are tested to analyze the method behavior; 3, 5, and 7 fuzzy

partitions per input value are selected; and, from 5 to 50 fuzzy rules in increments of 5. In

the experiment is performed, for every problem, 30 different cases with 5-fold cross-validation.

In table4.9 is shown the complete hyper-parameters values.
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Table 4.9: Selected hyper-parameters values in the optimization of automatically
building fuzzy inference system, using Mamdani-type Neuro-fuzzy representation.

Hyper parameter Value(s)

Input partition 3,5,7

Learning rate 0.01

Batch size Full batch

Epoch 3,000

Goal error 1e-6

K-Fold cross-validation 5 Folds

T-norm Product

S-norm Sum

4.2.1 Generation of linguistic modifiers to explain model adjustment

parameters

The parameters used to find the best hedge chain candidates through Grammar-Guide

Genetic Algorithm are 100 individuals for initial population, elitist selection of 20%, mutation

method of one node modification, mutation percentage of 20%, 50 maximum generations, top

best k = 5 individuals as a result based in similarity function.

The hedges that concern to uncertainty modifier, considered for this experiment, for

concentration, are: “very” with p = 2, “extremely” with p = 4, “exactly” with p = 6; those

who refer to dilation modifiers: “more− or − less” with p = 0.5, “kind− of” with p = 0.3.

These hedge modifier values are set arbitrarily, but their values must reflect their semantic

meaning in the operation of the membership functions. The linguistic terms that evoke an

increment in uncertainty should have a p < 1 value for a dilation operation; otherwise, if

the semantic meaning refers to a decrement in uncertainty, it should have a p > 1, for a
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concentration operation.

The linguistic modifiers which refer to shift operation of the membership function considered

in this experiment are: “Upper− than” that displace to the right the support of membership

function at α-cut = 0.5 of 25%; On the other hand, the linguistic modifier “Lower − than”

displace to left the support of membership function at α-cut = 0.5 of 25%. Given a fuzzy

set’s membership function µA(x), if a “Upper − than” operation is applied, its core change

to: core(µA(x))
new = core(µA(x))

old − |support(µAα=0.5(x))| × 0.25.

The overall obtained result of Mamdani neuro-fuzzy architecture evaluation, using K-Fold

cross-validation with k = 5 for every dataset are shown in the table 4.10, where the mean value

of the 16 datasets is 0.814 with a standard deviation of 0.027. The worst performance was

obtained for the dataset movement libras with 90 attributes and 15 target classes. The best

performances were achieved in the dataset segment0 with 0.998 with a standard deviation of

0.001. The first quartile is 0.73 and the third 0.968 of f1-score values.
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Table 4.10: Result f1-score and standard deviations of 5 k-fold cross-validation of
automatically built neuro-fuzzy model for each of 16 datasets.

Dataset Instances Attributes Classes f1 score σ

iris 150 4 3 0.967 0.052

bupa 345 6 2 0.700 0.026

ecoli 336 7 8 0.755 0.038

yeast1 1484 8 2 0.742 0.020

page-blocks 5472 10 5 0.830 0.066

flare 1066 11 6 0.661 0.027

cleveland 297 13 5 0.636 0.043

wine 178 13 3 0.976 0.021

penbased 10992 16 10 0.837 0.039

segment0 2308 18 2 0.998 0.001

twonorm 7400 20 2 0.971 0.002

wdbc 569 30 2 0.971 0.008

satimage 6435 36 6 0.747 0.004

spambase 4597 57 2 0.898 0.010

sonar 208 60 2 0.879 0.041

movement libras 360 90 15 0.450 0.040

mean 0.814 0.027

The image 4.9 shows the overall performance in terms of f1-score. Their values are grouped

by the three different experimental setups in which the number of fuzzy sets belonging to

each fuzzy variable (fuzzified input feature domain) is set to 3, 5, and 7. Furthermore, we

compare their distribution by considering the number of rules in the neuro-fuzzy model. In

most cases, as fewer rules are considered, the better is the model performance. As the number
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Figure 4.9: Overall mean performance of Mamdani Neuro-fuzzy model for each number
of the rules, grouped by their three input clusters configurations.

of rules increases, fewer fuzzy sets achieve slightly better performance.

The overall result of hedge approximation to the optimized FIS’s knowledge base is shown

in table 4.11 and figure 4.10. The mean of the similarity score (listed in 3.6) are: for three

fuzzy sets per fuzzy variable (feature) is 0.911, with a standard deviation of 0.057; in the

case of five fuzzy sets per fuzzy variable is 0.931 with 0.035 of standard deviation; in the last

setup, with seven fuzzy sets per fuzzy variable is 0.948 with a standard deviation of 0.028.

In most cases, with three partitions per input, it tends to be too difficult for the hedge chain

searching approach to approximate the model. As the number of fuzzy sets increases in the

searching space, the better the fitness score gets. The difference between those is 3.9%.
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Figure 4.10: Overall fidelity score (equation 3.6) grouped by each fuzzy variable
configuration: 3, 5 and, 7 fuzzy sets each one.
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Table 4.11: Overall result of approximate model similarity between the optimized
membership functions and linguistically transformed original knowledge. The similarity

measure is shown in equation 3.6.

Dataset
Number of fuzzy sets

3.000 5.000 7.000 Mean by dataset σ by dataset

iris 0.761 0.892 0.937 0.863 0.092

cleveland 0.907 0.905 0.914 0.909 0.004

flare 0.923 0.940 0.954 0.939 0.016

movement libras 0.926 0.937 0.964 0.942 0.020

spambase 0.939 0.962 0.967 0.956 0.015

page-blocks 0.818 0.903 0.945 0.888 0.065

wdbc 0.938 0.937 0.942 0.939 0.002

bupa 0.866 0.943 0.970 0.926 0.054

penbased 0.919 0.865 0.885 0.890 0.027

yeast1 1.000 0.918 0.962 0.960 0.041

wine 0.923 0.955 0.969 0.949 0.024

twonorm 0.979 0.971 0.950 0.967 0.015

ecoli 0.893 0.938 0.935 0.922 0.025

segment0 0.922 0.947 0.966 0.945 0.022

satimage 0.926 0.881 0.914 0.907 0.023

sonar 0.930 1.000 1.000 0.977 0.040

Mean 0.911 0.931 0.948

σ 0.057 0.035 0.028
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Chapter 5

Conclusion

This research proposes a linguistic granule model representing generic entities affected by a

linguistic description restricted by a context-free grammar. These abstract elements interact

in an environment, and their aptitude or performance can be measured given a particular

metric. This linguistic granule model is optimized using Grammar-Guided Genetic Programming

and Granular Computing.

This work aims to solve an open problem in the fuzzy logic domain area, which is the

semantic detachment of linguistic description after an optimization process of fuzzy inference

systems. The semantic meaning is essential to maintain the model’s interpretability and

explainability to transfer knowledge to the expert or user using natural language.

Obtained results show that neuro-fuzzy systems could play an essential role in interpretable

machine learning, providing natural language explanations from a well-defined knowledge

keeping its semantic meaning after the optimization process by finding a well-formed linguistic

granule.

In order to validate the proposal were conducted two independent experiments; the

first one (described in section 4.1) is a synthetic setup in which initial fuzzy sets should
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approximate as much as possible to a target fuzzy set design. These transformations should

be performed only by linguistic modifiers. The second experiment, described in section 4.2,

is a complete setup machine learning flow for classification problems. A collection of 16

publicly available datasets were used to measure the performance of the Mamdani-type fuzzy

inference system with the interpretability enhancement posthoc method.

The following sections present the particular conclusions for each of the experimentation

scenarios. In section 5.1 is presented the conclusion of the unary hedge transformation

function design as a multi-objective optimization problem in which the linguistic granule

should maximize the specificity and coverage criteria. The particular conclusion to the

restricted grammar to build intrinsic interpretable linguistic modifiers and binary hedge

transformation function tacking into account the context given by fuzzy variables design

is presented in section 5.2.

5.1 Unary hedge transformations over fuzzy sets

In this experimental setup, we conducted two different experiments. The first one refers to

the approximation of some membership function to another one of the same kind. And, in

the second one, the approximation of some membership function to another one of a different

kind.

In the first case study, we considered eight different membership functions. The membership

function types are Trapezoidal, Triangular, and Gaussian. The parameters of the membership

functions are shown in table 4.4. The mean of similarity obtained, with β = 0.99 is 0.712

with a standard deviation of 0.161, the minimum values are 0.455 and 0.535 that belong

to Triangular and Gaussian type membership functions respectively. The proposed “hedge

score” is 0.821 with a standard deviation of 0.258.
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In the same study case, but with the parameter β=0.01, the results are shown in table

4.3. The mean similarity value obtained, with β = 0.01, is 0.885 with a standard deviation

of 0.161. The proposed “hedge score” is 0.150 with a standard deviation of 0.104.

The overall results and sensitivity analysis of the first study case show that it is possible to

approximate membership functions one to another of the same kind (but different parameter

values) using only linguistic modifiers. The proposed methodology using GGGP is finding the

best hedge chain restricted by a grammar that might promote the expert’s straightforward

explanation of the resulting fuzzy set. Accordingly to the sensitivity analysis, the changes in

β might increase the interpretability without substantially decreasing the accuracy, which is

convenient in critical scenarios where interpretability plays an important role.

In the context of the second case study, the membership function of the source and target

are of different kinds (with different parameter values) and are considered the same as in the

first case study (triangular, trapezoidal, and Gaussian). The parameters of each membership

function, their similarity and hedge score values after the optimization are shown in table

4.5, considering the parameter β = 0.01. Considering the similarity value, the mean of those

results is 0.797 and the standard deviation of 0.107. However, concerning the hedge score

(“interpretability” value) are 0.307 and 0.302 the mean and standard deviation respectively.

In the same experiment, only varying the value β to 0.99, the results concerning the

similarity (accuracy) are 0.693 and 0.088 the mean and standard deviation. The results for the

hedge score (“interpretability” score) are 0.729 and 0.235, the mean and standard deviation,

respectively. The sensitivity analysis supports that the changes in β affect interpretability

more than the similarity. However, it does not achieve the same trade-off ratio as the first

study case but still can gain more interpretability and lose less performance.

The results in cases where the source is a Gaussian membership function and is fitted

to represent either Trapezoidal and Triangular membership functions are better (in terms of
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accuracy) than the rest of the cases, considering the parameter β = 0.01, which prioritizes

the accuracy. The mean grouped by the source are: Gaussian, mean = 0.887, σ = 0.012;

Triangular, mean = 0.831, σ = 0.015; and, Trapezoidal, mean = 0.683, σ = 0.048.

These sets of results show that the Gaussian membership function achieves a better

adjustment than the rest of the membership functions. This outcome is an interesting

finding because if the similarity is good enough between the source and the target, then

it can generalize a knowledge base only by Gaussian membership functions and reduce its

complexity. For example, the consequent computation can be analytical in fuzzy inference

systems. Exploring these cases further could be interesting, and using this assumption as

a baseline to optimize analytical calculation in the interval and generalized type-2 fuzzy

systems.

An important fact to highlight is that this work relies on the proposed linguistic modifier’s

parameter values in the optimization process. The results can be improved by the variations

of the values presented in table 4.2. Moreover, the grammar might achieve a wide variety of

results with slight changes.

5.2 Binary hedge transformations over fuzzy variables

The presented setup describes a methodology to generate an explanation layer to optimize

Mamdani-type neuro-fuzzy models and use them on broad application domains. After

the optimization process, the models built upon a rule-based system suffer from a lack of

interpretability, turning them into black-boxes. The proposed methodology aims to turn

back the neuro-fuzzy model to a white-box model, giving back the interpretable meaning to

the fuzzy sets through a defined context-free grammar that generates hedge chains to modify

the fuzzy sets’ membership functions.
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After optimization, the generated hedge chains can build unary and binary expressions

to approximate the initial knowledge (fuzzy sets) to the resulting fuzzy sets. Those linguistic

modifiers are optimized by a Genetic Algorithm that works over the context-free grammar

derivation trees as individuals, which a similarity function measures its fitness aptitude

(equation 3.6).

The proposed methodology was evaluated over a collection of 16 datasets for classification

with different characteristics (shown in table 4.10). For each dataset, an initial domain

fuzzification with 3, 5, and 7 fuzzy sets per input was built, where well-distributed Gaussian

functions designed their membership functions. The number of fuzzy rules is fixed from 5

to 50 with an increment of 5 rules each step. In the setup to train the neuro-fuzzy model,

cross-validation K-fold with k = 5 was used; with the following stopping conditions: 3,000

maximum epochs, error tolerance of 1e−6, early stopping when 15 consecutive performance

decay epochs.

The f1-score measures how well the model fitted to the dataset and the similarity score

to measure the approximation of the interpretable fuzzy inference system and the optimized

one.

In terms of performance, the neuro-fuzzy model resulted in 0.814 of mean, and 0.026 in

the standard deviation on the best configuration models, which are related to the number of

fuzzy sets per feature, and the number of rules (showed in figure 4.9). The maximum f1-score

is 0.998, and the minimum 0.45, which is the only value below 0.60. It is relevant to note that

no feature selection or feature extraction process was carried out to get a baseline. Results

show that the overall performance increases as a lower number of rules are used, in addition

to obtaining a better performance when a higher number of fuzzy sets per input feature is

used (figure 4.9). This is an important insight because a higher model complexity becomes

less interpretable.
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The similarity between the optimized and interpretable systems resulted in 0.93 of mean

and a standard deviation of 0.018, supporting the hypothesis that it is feasible to build

interpretable layers of abstraction after an optimization process. When the similarity score

is high, the solution hedge chain can be used to replace the missing-label optimized fuzzy set;

or, the transformation of the fuzzy set through the hedge chain (identity, unary and binary)

can be performed over the initial knowledge base. The overall model fidelity is shown in figure

4.10, the similarity score increases as the number of fuzzy sets increase too. A relatively small

number of fuzzy sets should be selected to achieve better interpretability. Based on obtained

results, it is better to select a few fuzzy rules with many fuzzy sets per input feature for

better performance and high fidelity.



Chapter 6

Future work

There are open study cases and improvement opportunities that will be covered in future

works, such as:

� Extend the application domain of the proposed model to other specific Machine Learning

processes, such as feature engineering and structure discovering. Those steps have

special relevance in the definition and discovery of interpretable models.

� Modeling uncertainty by higher Linguistic Granule order definition. The generic model

definition allows the incorporation of different model representations, which could be

used in probabilistic sets, rough sets, possibility sets, or any model that improves model

understanding through linguistic descriptions.

� Usage of higher arity of hedge chain relationships with more complex behaviors. The

usage of second-order relationships allowed to reduce the multi-optimization to a single

objective showing significant results over 90% of similarity between the optimized and

linguistic-only modified model.

� The extension of linguistic modifiers in the context-free grammar would increase the
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domain solution space; therefore, a better pseudo-optimal solution could be found.

� The proposed methodology can be used for building hedge chain descriptions to explain

the uncertainty interval type-2 fuzzy inference systems. In the binary transformation

function, the certainty-related description might describe the actual uncertainty footprint.

� The exploration process proposed in this work could be improved by another method

that could incorporate more information about the nodes to explore and not just the

distance. This specific step could be defined in a Reinforcement Learning context, in

which the generator is an agent and exploration path the actions.

� The overall performance and interpretability can be improved and build a better

robust initial knowledge base construction, applying feature selection, rule selection

or, adaptive number of fuzzy sets per feature.
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