MICROFILTRACIÓN CORONARIA DE TRES CEMENTOS DE OBTURACIÓN TEMPORAL: ESTUDIO IN VITRO

TRABAJO TERMINAL QUE PARA OBTENER EL DIPLOMA EN ENDODONCIA PRESENTA:

MARTHA EDITH FONSECA CEDANO

PRESIDENTE:
DRA. GABRIELA CARRILLO VÁRGUEZ

SINODALES:
DRA. VERÓNICA GONZALEZ TORRES M.O. MARIA ELENA HOFFMAN SALCEDO

TIJUANA, BAJA CALIFORNIA ABRIL 2015
MICROFILTRACIÓN CORONARIA DE TRES CEMENTOS DE OBTURACIÓN TEMPORAL: ESTUDIO IN VITRO

ALUMNO:
MARTHA EDITH FONSECA CEDANO

TUTOR:
DRA. GABRIELA CARRILLO VÁRGUEZ

SINODALES:
DRA. VERÓNICA GONZALEZ TORRES M.O. MARIA ELENA HOFFMAN SALCEDO

SINODAL EXTERNO:
M.C. OSCAR RENÉ BOLAÑOS
ÍNDICE

Introducción ... 1
Antecedentes ... 4
Marco Teórico .. 9
 Factores a analizar para la selección del material restaurador 12
 Tiempo de permanencia de la restauración .. 13
 Resistencia de la estructura dental remanente ... 14
 Forma de retención de la cavidad .. 14
 Posición del diente en la arcada ... 15
 Material restaurador definitivo a emplearse con ulterioridad 15
 Grado de dificultad para la remoción ulterior ... 16
 Estética ... 16
 Susceptibilidad del individuo a la caries ... 17
 Clasificación de los materiales para restauración temporaria 17
 Materiales que endurecen por la humedad ... 18
 Consideraciones para la selección ... 19

Planteamiento del Problema ... 22

Justificación .. 23

Hipótesis ... 23

Objetivo .. 24

Tipo de Estudio .. 24

Variables Dependiente e Independiente .. 24

Universo de Estudio ... 25

Criterios de Inclusión ... 25
El objetivo de éste estudio fue comparar la capacidad de sellado coronal de tres cementos de obturación temporal. A 190 dientes se les realizó el acceso al sistema de conductos radiculares, remoción de tejido pulpar y localización de los conductos. Los materiales a investigar asignados aleatoriamente fueron Provisit®, Cavit G® y MD Temp® divididos en 6 grupos; tres grupos con algodón en la entrada a los conductos y otros 3 grupos con el cemento de obturación únicamente (n=10), 5 dientes para control positivo y 5 para control negativo (n=5) fueron sumergidos en saliva artificial teñida con tinta china, durante períodos de tiempo de 7, 11 y 15 días.

Las muestras se retiraron del agente acuoso y fueron seccionadas longitudinalmente; la microfiltración fue observada utilizando un estereoscópico digital a 15x. Los parámetros de evaluación se basaron en la presencia o ausencia de microfiltración coronaria; mediante el programa estadístico SigmaPlot. Los resultados no mostraron diferencias estadísticamente significativas en la microfiltración coronaria presente en ninguno de los tres cementos ni en los intervalos de tiempo; dando como resultados valores mayores a (P = > 0.05).

ABSTRACT

The objective of this study was to compare the ability of coronal seal of three temporary cements. A 190 extracted teeth realized the access cavity, removal of...
pulp tissue and location of the canals. Materials research assigned were equally divided in six groups Provisit®, Cavit G® and MD Temp®; three groups with cotton at the entrance to the canals and other three groups with cement only (n=10), 10 teeth served as controls, 5 positive control and 5 negative control (n=5). All teeth were submerged in artificial saliva stained with ink, time during periods of 7, 11 and 15 days.

Back a wave, samples were removed from the aqueous agent and sectioned longitudinally; dye penetration was observed using digital stereoscopic 15x. The evaluation parameters used were based on the presence or absence of coronal microleakage; by SigmaPlot statistical program. The results showed: No statistically significant differences between the three cements studied in any of the three time intervals; giving results higher values (P = > 0.05).
INTRODUCCIÓN

El objetivo de un tratamiento de conductos es eliminar el tejido pulpar enfermo y crear un ambiente que permita la cicatrización de los tejidos periapicales. Los dientes afectados idealmente deben seguir una serie de pasos que inician retirando el tejido dañado, sellar el sistema de conductos, y posteriormente restaurar la estructura coronal del diente.

Muchos factores están implicados en el fracaso del tratamiento endodóntico; la aparición de bacterias que resisten la terapia y la proliferación dentro del conducto después del tratamiento son un ejemplo de la contaminación que puede generarse debido a la microfiltración coronal, la cual destaca como uno de los principales factores.

Con frecuencia, el éxito del tratamiento endodóntico se asocia a un sellado apical apropiado. Sin embargo, el lograr un correcto sellado coronal se ha considerado importante. En ciertas situaciones, el material de obturación puede ser expuesto al medio ambiente oral, como en el caso de alguna falla o pérdida de la restauración provisional exponiendo la entrada a los conductos al medio ambiente bucal.
Teóricamente, cualquier bacteria presente en la cavidad oral puede invadir el conducto y participar en la instalación de un proceso infeccioso. Las especies como *Enterococcus Faecalis*, han sido aisladas con frecuencia en conductos radiculares con fallas endodónticas, las cuales representan una pequeña parte de la microbiota inicial de dientes con necrosis pulpar y lesiones perirradiculares. Esta bacteria demuestra la resistencia a los procedimientos de desinfección durante la preparación quimiomecánica y la capacidad de sobrevivir en conductos radiculares como una sola especie sin la necesidad de una relación o cooperación con otras bacterias.

La literatura está reconociendo cada vez más la importancia del sellado coronal. Muchas veces no se le otorga la importancia que requiere, esto afectará la capacidad del material para evitar la microfiltración y, a su vez permitirá la penetración de bacterias hacia los conductos radiculares.

La mayor causa de microfiltración, es la pobre adaptación del material a la estructura dentaria, esto puede ser debido a una adaptabilidad inferior por parte del material, o por falta de conocimiento para colocar el material por parte del operador: también la preparación adecuada del acceso endodóntico es de extrema importancia, ya que una cavidad mal realizada dificultará la
condensación del material en el caso de áreas socavadas, de igual forma la presencia de estructura dentaria sin soporte puede presentar fracturas posteriores aumentando las probabilidades de microfiltración\(^2\).

Algunas veces se requiere de múltiples visitas para llevar a cabo el tratamiento, sobre todo en casos que hay necesidad de utilizar algún tipo de medicación expectante para combatir un proceso infeccioso crónico\(^3\).

Por lo tanto, los materiales de obturación temporal son usados para sellar la cavidad de acceso entre citas, prevenir la contaminación del sistema de conductos por bacterias y fluidos de la cavidad oral; favorecer la efectividad de dicha medicación evitando que escape y también debe tener fuerza estructural suficiente para soportar las fuerzas masticatorias y no deberá de desprenderse de la superficie dentaria por la ingesta de alimentos y líquidos de la dieta del paciente\(^4\). El intervalo entre el sellado de los conductos y la reconstrucción o colocación del poste, muñón y corona es posiblemente más importante que el material empleado. En la revista Colleagues for Excellence. La Asociación Americana de Endodoncia (American Association of Endodontics AAE) estableció que “La restauración... debe de comenzar lo antes posible después del tratamiento de conductos”. Siempre que sea posible, la unión del núcleo interno se debe realizar en la misma visita que la cita de obturación\(^5\).
ANTECEDENTES

Grossman fue uno de los pioneros en investigaciones sobre microfiltración de materiales provisionales, él realizó un estudio en 1939 sobre éste tema; para realizar dicha investigación utilizó capilares de cristal, los cuales eran rugosos en sus paredes internas, cada tubo fue obturado con el material a examinar en uno de sus extremos y sobre el material obturador se coloco algodón. El extremo obturado de los capilares fue sumergido en una solución de tinta y el extremo sin obturar permaneció por arriba de la superficie de la solución. La pigmentación del algodón por la tinta indicaba la presencia de filtración a través del material de obturación. De lo materiales utilizados en dicho estudio, el cemento de fosfato de zinc presento el peor comportamiento, la gutapercha fue intermedia y el cemento de oxido de zinc y eugenol (ZOE) fue el que presentó mejores resultados⁶.

Otros de los investigadores que abrieron camino sobre esta área de investigación fueron Parris y Kapsimalis, ellos realizaron un estudio que dividieron en dos partes. En la primera parte utilizaron 117 dientes anteriores infectados, a los cuales se les removió 2 mm del ápice y se les
realizó obturación retrógrada con amalgama, se continuó con el acceso endodóntico para luego colocar 2 mm de algodón en cámara pulpar y sobre éste el material a estudiar.

Se evaluaron 9 materiales de obturación; fueron 2 tipos de gutapercha, 2 marcas de fosfato de zinc provisional, 2 marcas de cemento de fosfato de zinc permanente ZOE, Cavit® y amalgama, esta última se utilizó como control.

El estudio se realizó a temperatura ambiente durante 72 horas y con tratamiento térmico (60°C – 4°C) 10 ciclos de un minuto cada uno como material de tinción se utilizó anilina al 2%.

A temperatura ambiente los dos tipos de gutapercha y las dos marcas de cemento de fosfato de zinc tanto provisional como permanente presentaron franca filtración, la cual se dió a lo largo de la interfase material obturador - estructura dentaria. Ninguno de los especímenes obturados con ZOE, Cavit® y amalgama presentaron filtración dentro de cámara pulpar.

En el tratamiento térmico los dientes obturados con ambos tipos de gutapercha y las dos marcas de cemento de fosfato de zinc tanto provisional como permanente presentaron franca filtración, la mitad de los especímenes obturados con ZOE presentaron filtración. Cavit® y amalgama no presentaron penetración de tinta.
En la segunda parte del estudio, además de penetración de tinta, también se utilizó penetración bacteriana para evaluar microfiltración. Las bacterias utilizadas para evaluar el sellado fueron *Sarcina Lútea y Serratia Marcescens* debido a que la primera soporta una temperatura de 60°C y la segunda 4°C, en esta sección se utilizaron 130 dientes intactos y se prepararon de la misma manera que en la primera parte.

Una vez colocado el material a estudiar se almacenaron los especímenes en solución salina durante 24 horas para luego ponerlos en una solución que contenía *Serratia Mercescens* a 4°C durante un minuto y posteriormente cambiarlos a una solución de *Sarcina Lútea* a 50°C durante un minuto, éste procedimiento se realizó diez veces. Una vez realizado esto, se lavaron los especímenes, se removió el material provisional bajo condiciones estériles y se tomó el algodón colocado en cámara pulpar para depositarlo en tubos que contenían medios de cultivo; los cuales se incubaron durante 48 hrs para verificar la presencia de microorganismos.

De los materiales evaluados los siguientes no presentaron filtración bacteriana: Cavit®, ZOE, y amalgama. Con estos resultados los autores llegaron a la conclusión de que solo Cavit® y amalgama (control) mantienen el sellado de la cavidad tanto a la temperatura ambiente como durante los cambios térmicos.

El efecto de las fuerzas masticatorias y la presencia de húmedad al momento de la colocación del material provisional afectan sus propiedades selladoras. Qvist en 1983, encontró un marcado efecto de las fuerzas masticatorias sobre la filtración marginal que fue significativamente mayor en dientes que se encontraban en oclusión funcional, que en los dientes encontrados en condiciones similares pero sin antagonistas.

Safavi y cols han reportado que la microfiltración que presentan los materiales restauradores temporales incrementa con el tiempo, y a la vez, han sugerido que dicha filtración juega un papel importante en el éxito o fracaso de la terapia endodóntica.

Se ha hablado bastante respecto al origen de las bacterias que se encuentran dentro del acceso endodóntico y sistema de conductos radiculares. Es factible que al momento de hacer la limpieza y conformación del sistema de conductos las bacterias hayan quedado atrapadas en el lodo dentinario, además Brannstrom (1984) propone que estas bacterias tienen la capacidad de proliferar. Por otra parte Berenholtz y cols (1982) presentaron evidencia de que la bacteria que se encuentra en la cavidad endodóntica proviene de la filtración del medio ambiente oral; lo cierto es que las bacterias pueden estar en conductos debido a tres factores:
- Una limpieza de conductos realizada inadecuadamente.
- Contaminación de conductos durante la instrumentación.
- Microfiltración a través de los materiales utilizados como obturador de la cavidad.

Swanson y cols evaluaron la microfiltración que se presenta en conductos radiculares obturados a base de gutapercha y sellados utilizando saliva artificial, a diferentes intervalos de tiempo. Ellos concluyeron que un corto período de tiempo de exposición de la obturación de los conductos a los fluidos orales puede ser un factor etiológico potencial para el fracaso del tratamiento.

Existe una gran variedad de factores que repercuten en las propiedades de los materiales de obturación provisional, además de los antes mencionados:

a) Existe gran controversia respecto al espesor necesario del material obturador para contrarrestar la microfiltración, en un estudio realizado por Webber y cols se llegó a la conclusión que las obturaciones realizadas con Cavit deben tener un espesor de 3.5 mm o más, para que este pueda prevenir la microfiltración; a esta misma conclusión llegaron Lamers y cols después de haber realizado un estudio en el que colocaron obturaciones de Cavit W® con un espesor de 2 mm.
b) Después de analizar estos estudios se puede concluir que el espesor del material obturador cuando menos debe ser de 3.5mm y que en cuanto más aumente mejores serán los resultados obtenidos.

c) Gilles y cols15 llegaron a la conclusión en su estudio de estabilidad dimensional de restauraciones temporales, que los fenómenos de absorción y deshidratación afectan significativamente la estabilidad dimensional de los materiales, al igual que ocurrió cuando se aplicaron cambios térmicos16.

MARCO TEÓRICO

Las restauraciones temporarias o provisorias se definen como las que permanecen por un periodo determinado, variable de acuerdo con las necesidades de cada caso. Utilizadas en la mayoría de las especialidades odontológicas, las restauraciones provisorias se requieren más a menudo en Odontopediatría, Prótesis Fija, Operatoria y Endodoncia. Uno de los mayores retos a los que se enfrenta un material de obturación provisional es la microfiltración, la cual puede
ser definida como el ingreso de fluidos orales entre el material y la estructura dentaria, o incluso, a través del propio material.

En Odontopediatría muchas veces el intervalo entre la ejecución de las restauraciones provisorias y las permanentes puede ser largo, lo que exige de las primeras protección adecuada al diente y mínima alteración de la fisiología bucal.

De la misma forma, en Prótesis Fija y Operatoria Dental las restauraciones provisorias son en extremo necesarias antes de la colocación de coronas, prótesis fijas u otras restauraciones que, por diversos motivos no pueden practicarse en la misma sesión.

En Endodoncia, la necesidad de restauraciones provisorias es evidente. Con frecuencia el endodoncista no desea o no puede concluir el tratamiento en una sola sesión. En este intervalo entre sesiones es muy importante que el diente quede restaurado en forma adecuada. Además de protegerlo, evitando fracturas, la restauración debe propiciar un sellado hermético de la cavidad de acceso al sistema de conductos radiculares, para evitar la filtración marginal, lo que sin duda influye en el resultado final del tratamiento17.

La restauración provisoria es importante no solo durante el tratamiento endodóntico, sino que también es fundamental después de su conclusión. En
innumerables trabajos se registro en forma inequívoca que la obturación endodóntica expuesta al medio bucal no tiene condiciones para impedir la recontaminación del conducto tratado. Por ende, la restauración de la cavidad de acceso con un material adecuado es fundamental para el éxito del tratamiento. Lamentablemente, la restauración provisoria realizada después de la obturación de conductos, debería ser sustituida por la restauración definitiva en algunos días, pero termina por durar meses. De todo lo expuesto surge la necesidad evidente de que también las restauraciones provisorias realizadas después de la conclusión del tratamiento endodóntico deban ejecutarse de la mejor manera posible.

Los materiales restauradores provisorios evolucionan en forma constante, al igual que los definitivos. Muchas y frecuentes son las modificaciones en los componentes básicos de los antiguos materiales, así como es grande la cantidad de productos nuevos en el mercado. Estos factores, sumados a la propaganda comercial intensa y desencontrada acaban por dificultar la selección del material adecuado.

Es importante destacar que no hay un material que satisfaga todas las expectativas del profesional, es decir, que posea todas las propiedades deseables, como: sellado, estética, fácil manipulación, endurecimiento rápido, resistencia mecánica, etc. La selección correcta varía de acuerdo con la especificidad de cada caso. El factor más importante para orientar una
selección efectiva es el conocimiento de las propiedades básicas de cada material20.

FACTORES A ANALIZAR PARA LA SELECCIÓN DEL MATERIAL RESTAURADOR

Antes del proceso de selección del material adecuado para la restauración provisoria es oportuno tener en cuenta los siguientes factores:

- Tiempo de permanencia de la restauración.
- Resistencia de la estructura dental remanente.
- Forma de la retención de la cavidad.
- Posición del diente en la arcada.
- Material restaurador definitivo a emplearse con ulterioridad.
- Grado de dificultad para la remoción posterior.
- Estética.
- Susceptibilidad del individuo a la caries.

Otros ítem, como facilidad de manipulación, dificultad de adquisición o costo del material, también deben analizarse, a pesar de ser de menor importancia.
TIEMPO DE PERMANENCIA DE LA RESTAURACIÓN

Las restauraciones provisorias pueden permanecer por períodos distintos, según la necesidad operativa de cada caso, la disponibilidad del profesional o incluso a conveniencia del paciente. En los casos que la restauración vaya a perdurar por períodos breves (24 a 72 horas), algunas de las características físicas del material, como la resistencia mecánica, no son prioritarias, ya que la restauración se removerá poco tiempo después. En estas situaciones, el profesional debe usar un material con buena capacidad de sellado (siempre necesaria) y de fácil manipulación y remoción. Es importante – e imprescindible - alertar al paciente sobre la posibilidad de fractura de la restauración.

Si se tratase de periodos mayores (4-90 días), además de la buena capacidad de sellado el material debe poseer adecuadas propiedades mecánicas. El desgaste, el grado de solubilidad y la resistencia a la tracción y a la compresión deben analizarse con cuidado; en estos caso muchas veces se puede optar por el uso de un material restaurador definitivo, aunque persista la necesidad de retirarlo luego.
RESISTENCIA DE LA ESTRUCTURA DENTAL REMANENTE

La elección del material adecuado dependerá mucho del remanente dentario a restaurar. Los dientes con gran destrucción son susceptibles a la fractura y exigen materiales resistentes, de preferencia con propiedades adhesivas. El módulo de resiliencia de los materiales (es decir, el poder de absorción de energía en forma de choque) es un factor importante a considerar en especial en casos de dientes con cúspides altas y sin protección. Aquí una vez mas y en función del riesgo de fractura (mal oclusión y de los hábitos del paciente), un material restaurador definitivo, como la resina composite, puede ser una elección excelente.

FORMA DE RETENCIÓN DE LA CAVIDAD

El endodoncista podrá seleccionar el material adecuado observando la capacidad de retención del remanente dental. En caso de que el diente posea capacidad de retención suficiente, la selección será menos crítica en cuanto a la propiedad adhesiva del material, al contrario de lo que ocurre en dientes con retención escasa o nula, que permiten un desprendimiento fácil de la restauración.
En este ultimo caso, el profesional deberá valerse de todas las características intrínsecas positivas del material, como la adhesividad, que se observa en los cementos de policarbonato de cinc, ionómero vítreo, compómeros (ionómero + composite) o de otros productos resinosos que se utilizan como adhesivos.

POSICIÓN DEL DIENTE EN LA ARCADA

Experimentos realizados en adultos probaron que las fuerzas masticatorias disminuyen desde los molares hacia los incisivos. Por esta razón, los dientes posteriores siempre deben restaurarse en forma provisional con materiales de buena resistencia mecánica. Los dientes anteriores, a su vez, no necesitan de esta propiedad física pero requieren estética adecuada y materiales con mínima posibilidad de colorearse.

MATERIAL RESTAURADOR DEFINITIVO A EMPLEARSE CON ULTERIORIDAD

Cuando se usan productos resinosos después de la inserción de materiales que contienen eugenol se produce una incompatibilidad química entre el material empleado para la restauración provisional y el utilizado en la...
restauración definitiva. El eugenol presente en algunos cementos inhibe en grado significativo la polimerización de composites y acrílicos y puede comprometer las propiedades físicas de la restauración permanente.

GRADO DE DIFICULTAD PARA LA REMOCIÓN ULTERIOR

Según el material usado, su remoción puede resultar trabajosa, lo que dificultará la actividad del profesional que realizará la restauración definitiva o incluso del propio endodoncista cuando lo emplea como material obturador entre sesiones. Esto ocurre sobre todo con los nuevos materiales resinosos y cementos, en extremo resistentes. Cuando la restauración permanecerá por plazos cortos es preferible el uso de materiales que puedan removerse en bloque.

ESTÉTICA

Por grande que sea el grado de tolerancia del paciente o por breve que sea el tiempo de permanencia de la restauración provisoria en boca, la buena apariencia debe mantenerse. La gran diversidad de materiales disponibles favorece un trabajo estético; de esta forma, son inadmisibles contrastes exagerados de color así como formatos no armoniosos, sobre todo en la región de incisivos, caninos y premolares. Como ya se mencionó, frente a las
dificultades con la estética, en endodoncista puede valerse de asociaciones o inclusive de materiales restauradores permanentes.

SUSCEPTIBILIDAD DEL INDIVIDUO A LA CARIES

El endodoncista, lejos de preocuparse solo por el tratamiento de conductos radiculares, tiene un papel fundamental en el proceso de preparación de la boca, para contribuir a minimizar las posibilidades de continuidad de la caries. Los materiales liberadores de flúor (como los ionómeros de vidrio) y en menor grado, los compómeros y algunos composites desempeñan un papel fundamental en esta tarea⁰¹.

CLASIFICACIÓN DE LOS MATERIALES PARA RESTAURACIÓN TEMPORARIA

Las clasificaciones de estos materiales pueden ser diversas, en vista de la gran cantidad y variedad existente. Se incluye a continuación de manera didáctica una exposición clara para quienes ejercen la endodoncia:

- Cementos de óxido de cinc y eugenol.
- Cementos de policarboxilato de cinc.
• Cementos de ionómero vítreo.
• Materiales resinosos polimerizables.
• Materiales que endurecen por la humedad.
• Cementos de fosfato de cinc.

MATERIALES QUE ENDURECEN POR LA HÚMEDAD

Los más empleados para este fin son IRM® (L.D: Caulk, Milford, DE); el Term® (L.D Caulk) y el Cavit® (3M ESPE). Se ha dedicado una gran cantidad de tiempo y esfuerzo de investigación a evaluar la eficacia de diversos materiales de obturación coronal intermedios.

El Cavit® (3M ESPE) es un restaurador temporario que se compone de oxido de cinc, sulfato de calcio, glicolacetato, polivinilacetato y trietanolamina, son materiales que presentan consistencia de pasta y que al contactar con la humedad inician un proceso de endurecimiento. El material tiene una vida útil limitada. Algunos estudios comprobaron la eficiencia del Cavit®, Cavit G®, y Cavit W®, y confirmaron su impermeabilidad y sellado marginal. Es un producto bastante utilizado en endodoncia, desde la fundación de ESPE en el año 1947, ha sido una parte esencial del proceso de restauración temporal debido a la facilidad de su manipulación; esta indicado también para la fijación de prótesis provisorias.
Cavit W® y Cavit G® se diferencian de Cavit por presentar menor resistencia mecánica y por ser más fáciles de retirar. Por consiguiente, se recomiendan para obturaciones de menor duración, pero limitadas en cuanto a su resistencia mecánica. En cavidades amplias sujetas a fuerzas oclusales de gran magnitud deben evitarse21.

El cemento MD Temp® (METABIOMED) y Provisit (CASA IDEA S.A de C.V) son también materiales de relleno temporal para cavidades estándar y tratamientos post-endodoncia. Compuestos de acetato de polivinilo, óxido de zinc, sulfato de calcio, etanol. Sus ventajas no varían mucho de otras marcas, su aplicación es sencilla lo cual facilita su extracción, sella la cavidad herméticamente (se adhiere a la dentina, se expande ligeramente durante el ajuste y se endurece rápidamente), presenta una excelente estabilidad cuando se establece y tiene una adecuada resistencia a la compresión en 25 minutos o menos dentro de la húmedad del ambiente oral.

CONSIDERACIONES PARA LA SELECCIÓN

Es obvia la necesidad de un material obturador temporario para endodoncia, que impida la microfiltración de líquidos bucales y que tenga buen desempeño clínico en lo que concierne a la resistencia mecánica.
La discusión respecto de los cementos de oxido de cinc y eugenol aún persite, en vista de los numerosos y conflictivos trabajos que investigan este material como restaurador temporario. No obstante, parece claro que los trabajadores que señalan al óxido de zinc y eugenol como buen sellador marginal utilizaron una metodología inadecuada, es decir, no los sometieron al ciclado térmico y el ZOE es bastante sensible a la variación térmica. Empero, Cavit®, Cavit G® y Cavit W® resisten muy bien los cambios térmicos. Esto se debe a que el coeficiente de expansión térmica lineal del Cavit® es dos veces superior al ZOE; no ocurre lo mismo con la resistencia mecánica, pues el ZOE duplica la resistencia del Cavit®.

En relación con el Cavit® hay evidencias de que su potencial de sellado se debe a sus propiedades higroscópicas. Para usarlo como restaurador provisorio, el Cavit® debe manipularse bien para que no tenga fallas; la restauración debe tener un espesor mínimo de 3.5 mm.

Es importante destacar que algunos fármacos usados como curativo entre sesiones, pueden influir sobre la capacidad selladora del material restaurador.

El uso de asociaciones de materiales demostró minimizar el problema infiltración marginal/resistencia mecánica. El doble sellado mejora la calidad del
cierre obtenido. Así, un doble sellado con Cavit® + IRM®, proporciona resultados excelentes.

Es importante señalar que además del desempeño del material obturador hay otras variables significativas, inherentes al operador; entre ellas destacamos:

- Preparación incorrecta de la cavidad, con paredes de esmalte sin apoyo, que se podrán fracturar y causar infiltración;
- Mala adaptación del material a la cavidad, por desprolijidad o apresuramiento;
- Presencia de impurezas entre la cavidad y la restauración temporaria;
- Deterioro del material obturador.

En conclusión, son muchas y diversas las causas de una restauración provisoria ineficiente; algunas se relacionan con exclusividad con el material empleado; otras son responsabilidad del operador. Es evidente entonces que el éxito del tratamiento endodóntico también depende en grado significativo de una buena restauración provisoria, cuya elección e instalación se relaciona en forma directa con los conocimientos y la habilidad del profesional.
PLANTEAMIENTO DEL PROBLEMA

La principal preocupación del endodoncista es lograr el mayor porcentaje de éxito para el paciente mediante la disminución de la carga bacteriana dentro del sistema de conductos radiculares efectuando un correcto tratamiento, en el cual por ningún motivo se debe de omitir el empleo de cemento provisional entre citas. De estos principios se toma la necesidad de encontrar un material temporal que ofrezca una barrera antibacteriana, menor cantidad de microfiltración, resistencia a la fractura y desprendimiento del mismo en intervalos de tiempo considerables para llevarlo a cabo.

La necesidad de contar con un material de sellado temporal se refleja en el hecho de que muchos dientes tratados endodónticamente con accesos complejos presentan problemas como desprendimiento del material temporal, contaminación del conducto radicular o fractura del diente en tratamiento, lo que ocasiona reiniciar el tratamiento o perder el órgano dentario debido a dificultades de restauración y no al tratamiento de conductos. En qué zona de la apertura coronaria hay mayor presencia de microfiltración coronaria y en cuanto tiempo ésta se presenta. ¿Será una posibilidad que alguno de los cementos provisionales presente menor cantidad de microfiltración?
JUSTIFICACIÓN

Las bacterias en la cavidad endodóntica provienen de la filtración del medio ambiente oral. Existe gran controversia respecto al espesor necesario del material obturador provisional para contrarrestar la microfiltración. Tanto la deshidratación como los cambios térmicos afectan considerablemente las propiedades de dichos materiales. Es por ello que mediante este estudio se pretende detectar que tanto influye el factor tiempo para la presencia o ausencia de ésta y cuál cemento provisional ofrece mayores ventajas o pierde en menor cantidad sus propiedades durante el tiempo establecido del estudio ofreciendo así no solo beneficios específicos en endodoncia; sino también para otras áreas como la Operatoria o Prótesis Dental.

HIPÓTESIS

HI: Todos los cementos muestran microfiltración coronaria.
HN: Ninguno de los cementos muestra microfiltración coronaria.
HA: El Cavit G® es el mejor material de obturación temporal.
HA: El Provisit® es el mejor material de obturación temporal.
HA: El MD Temp® es el mejor material de obturación temporal.
OBJETIVO

El objetivo de este estudio es determinar cual de los tres cementos presenta mayor microfiltración coronaria; Cavit G®, Provisit® y MD Temp®, en un ambiente húmedo durante un periodo de tiempo de 7, 11 y 15 días, detectar que zonas de la porción coronaria son más propensas a la microfiltración y qué tanta influencia tiene en los resultados la colocación de una pequeña porción de algodón en la entrada a los conductos radiculares.

TIPO DE ESTUDIO

Prospectivo
Longitudinal
Comparativo
Observacional

VARIABLE DEPENDIENTE

Microfiltración coronaria.
VARIABLE INDEPENDIENTE

Cavit G®/ Cavit® con algodón.

Provisit®/ Provisit® con algodón.

MD Temp®/ MD Temp® con algodón.

UNIVERSO DE ESTUDIO

190 molares extraídas.

CRITERIOS DE INCLUSIÓN

Molares superiores e inferiores de cualquier grupo (primeras, segundas y terceras molares)

Molares con pérdida de estructura (que presenten como remanente mínimo tres paredes completas).

Molares sin caries.

Molares con caries (no muy extensas o con gran destrucción).

Molares con raíces completas.

Molares con tratamiento de conductos.

Molares con restauraciones Clase I y II de amalgama o resina (en cualquier condición).
CRITERIOS DE EXCLUSIÓN

Molares con gran destrucción coronaria que no sean capaces de retener el cemento provisional (que presenten dos paredes o menos como remanente de estructura dentaria o caries hasta la porción cervical o radicular).

Molares con formación radicular incompleta.

Molares con raíces fracturadas.

Molares con restauraciones protésicas de metal colado o de porcelana (coronas completas, coronas tres cuartos o incrustaciones/inlay).

CRITERIOS DE ELIMINACIÓN

Coronas fracturadas.*

Raíces fracturadas.*

Perdida total del material provisional en la cavidad de acceso.*

*(generadas a partir de la sección de la muestra).
MATERIALES Y MÉTODOS

LISTA DE INSTRUMENTAL Y MATERIALES UTILIZADOS

Pinzas de curación (6b Invent Germany).
Espátula para cemento (6b Invent Germany).
Curetas no. 13-14 (Hu-Friedy).
Explorador endodóntico DG16 (Hu-Friedy).
Sonda periodontal no. 15 (Hu-Friedy).
Pieza de mano de alta velocidad (Midwest).
Fresas bola de carburo de tungsteno no. 5 (SDS Keer).
Frasco 28g Cavit G® (3M ESPE).
Frasco Provisit® 30g (Casa Idea).
Frasco 40g MD Temp® (Metabiomed).
Saliva artificial 250ml (Viarden).
Disco de diamante 911 de 20mm (Komet).
Rollo de algodón (Euronda).
Tinta china (Pelikan).
Motor de baja velocidad (Red Wing).
Esmalte para uñas transparente (Sally Hansen).
Hipoclorito de sodio 5.25% (Cloralex).
METODOLOGÍA

Se recolectaron 190 molares superiores e inferiores de cualquier tipo y bajo diferentes condiciones; integros, con pérdida de esmalte, con algún tipo de restauración o con caries no invasiva que por lo menos presentaran tres paredes de estructura dentaria como remanente.

Los dientes fueron sometidos a un procedimiento de limpieza, remoción de cálculos y tejido periodontal. Se desinfectaron durante 12 horas en una solución de hipoclorito de sodio al 2.5%, después se lavaron con agua corriente y se eliminaron restos del ligamento periodontal y cálculos con una cureta no. 13-14 (Hu-Friedy). Se realizaron las cavidades de acceso con una fresa redonda nueva de carburo no. 4 de tungsteno (SDS Keer), y además una cavidad Clase II con fresa cilíndrica nueva de diamante punta plana (SDS Keer) en porción mesial o distal elegida al azar y también siguiendo la orientación de la caries en caso de que el diente la presentara; dicha caja proximal se realizó puesto que la gran mayoría de los órganos dentarios sometidos a tratamiento de conductos carecen de una pared dentaria o esta se encuentra en malas condiciones; las
dimensiones de la caja presentaban una altura de 4mm desde cervical hacia coronal y 3mm de ancho; dichas dimensiones se verificación con una sonda periodontal no. 15 (Hu-Friedy) se localizaron conductos y se eliminaron los restos de tejido pulpar con explorador endodóntico DG16 (Hu-Friedy) y se volvieron a almacenar en un recipiente de plástico en una solución de hipoclorito de sodio al 2.5% durante 12 horas para disolver todos los remanentes de tejido pulpar, pasado el tiempo se lavaron con agua corriente y se coloraron en un campo de papel para iniciar el proceso de secado.

Uno a uno se secaron los accesos de las muestras con una pequeña torunda de algodón (Euronda) y después se dividieron en 6 grupos de 30 dientes cada uno; los tres primeros incluyeron la colocación de las diferentes marcas de los cementos a estudiar; Cavit G®, Provisit® y MD Temp® con una espátula para cemento de doble extremo (6b Invent Germany) bajo estricto apego a la indicaciones de manipulación que el fabricante indica y otros 3 grupos con una pequeña porción de algodón que no excediera 1mm de grosor en la entrada de los conductos, la medición de la cantidad de algodón se llevo a cabo con una sonda periodontal no.15 (Hu- Friedy). Se condensó y se adaptó el cemento a la configuración anatómica de la muestra
con un algodón humedecido con agua corriente tomado con una pinza de exploración (6b Invent Germany).

Como control positivo se tomaron 5 molares con el mismo protocolo de desinfección y localización de conductos sin cemento provisional; y como control negativo 5 molares íntegras previamente desinfectadas pero sin cavidad de acceso.

Para mantener las muestras en un ambiente húmedo se utilizaron 250 ml de saliva artificial (Viarden), teñido con tinta china (Pelikan) para hacer visible la microfiltración. Dicha solución fue vertida en partes iguales en un recipiente plástico (Tupperware) con divisiones para cada uno de los grupos. Se colocaron las muestras en cada uno de los espacios correspondientes verificando dicho agente acuoso las cubriera en su totalidad; los espacios fueron etiquetados según el cemento utilizado y si éste tenía o no algodón en la entrada a los conductos. Las muestras se mantuvieron en la saliva artificial a temperatura ambiente durante dos semanas, se retiraron 10 muestras de cada grupo a los 7 días, otras 10 muestras a los 11 días y las últimas 10 a los 15 días.

Se establecieron estos períodos de tiempo por la importancia de la permanencia y el proceso que se toma en hacer efecto la medicación expectante dentro del sistema de conductos principalmente; y también por
cuestiones que no dependen del clínico sino de la presencia del paciente a la consulta odontológica.

Los grupos de estudio quedaron establecidos de la siguiente manera:

- **Grupo 1**: 10 molares selladas con Cavit G®.
- **Grupo 2**: 10 molares selladas con algodón y Cavit G®.
- **Grupo 3**: 10 molares selladas con Provisit®.
- **Grupo 4**: 10 molares selladas con algodón y Provisit®.
- **Grupo 5**: 10 molares selladas con MD Temp®.
- **Grupo 6**: 10 molares selladas con algodón y MD Temp®.

Las muestras se seccionaron longitudinalmente, después de haber sido retiradas de la saliva artificial según cada periodo de tiempo establecido con un disco de diamante 911 de 20mm (Komet).
montado en un motor de baja velocidad (Red Wing).

Posteriormente se acudió al laboratorio del área especializada de microbiología del Centro de Ciencias de la Salud (CISALUD) de la Universidad Autónoma de Baja California (UABC) Unidad Valle de las Palmas para la observación de la microfiltración bajo un estereomicroscopio digital (Motic DM-143-FBGG) a un rango de magnificación de 4X.

Dicha microfiltración se determinó por la superficie teñida o penetración del agente acuoso a través del cemento provisional desde las paredes de la cavidad o bordes de la caja proximal hacia la parte central del cemento provisional; o incluso hacia el piso de la cámara pulpar o entrada a los conductos radiculares bajo los parámetros de ausencia o presencia con los cuales se llevó a cabo un análisis estadístico que comprobará las hipótesis planteadas.
ANALISIS ESTADÍSTICO

Los resultados se analizaron mediante dos programas estadísticos informáticos; el primero de ellos fue SigmaPlot mediante la prueba no paramétrica de Fisher (P = < 0.05) para determinar si existía una diferencia estadísticamente significativa entre las condiciones experimentales de cada grupo. Se utilizó también el programa SPSS para realizar una estadística descriptiva de dichos resultados y obtener tablas de contingencias.

La ausencia o presencia de penetración del agente acuoso desde la pared dentaria hacia el núcleo del cemento sellador fueron los parámetros utilizados para realizar una base de datos de la cual se tomaron los registros que se llevaron a ambos programas estadísticos.
RESULTADOS

La siguiente tabla es la base de datos que muestra los resultados obtenidos inmediatamente después de haber observado bajo estereomicroscopio (Motic DM-143-FBGG) cada uno de los especímenes, los valores numéricos indican en cuántas de esas muestras hubo presencia o ausencia de microfiltración en los tres periodos de tiempo establecidos.

<table>
<thead>
<tr>
<th>GRUPOS</th>
<th>7 DIAS</th>
<th>11 DIAS</th>
<th>15 DIAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAVIT</td>
<td>5 P</td>
<td>5 A</td>
<td>4 P</td>
</tr>
<tr>
<td>CAVIT/ALGODÓN</td>
<td>3 P</td>
<td>7 A</td>
<td>6 P</td>
</tr>
<tr>
<td>PROVISIT</td>
<td>4 P</td>
<td>6 A</td>
<td>3 P</td>
</tr>
<tr>
<td>PROVISIT/ALGODÓN</td>
<td>7 P</td>
<td>3 A</td>
<td>7 P</td>
</tr>
<tr>
<td>MD-TEMP</td>
<td>3 P</td>
<td>7 A</td>
<td>6 P</td>
</tr>
<tr>
<td>MD-TEMP/ALGODÓN</td>
<td>6 P</td>
<td>4 A</td>
<td>5 P</td>
</tr>
</tbody>
</table>

P= PRESENCIA DE FILTRACIÓN A = AUSENCIA DE FILTRACIÓN

Se realizó un análisis de varianza no paramétrico mediante la prueba de Fisher con el programa SigmaPlot dado que el momento de comparar dos grupos alguna de las frecuencias era menor a 5.
La siguiente tabla muestra las diferencia entre la colocación de algodón en la entrada a los conductos y utilizar solo el cemento en los 3 períodos de tiempo.

<table>
<thead>
<tr>
<th>GRUPOS</th>
<th>7 DIAS</th>
<th>11 DIAS</th>
<th>15 DIAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAVIT_CAVIT/ALGODÓN</td>
<td>P = 0.650</td>
<td>P = 0.656</td>
<td>P = 0.179</td>
</tr>
<tr>
<td>PROVISIT_PROVISIT/ALGODÓN</td>
<td>P = 0.370</td>
<td>P = 0.179</td>
<td>P = 0.070</td>
</tr>
<tr>
<td>MD TEMP_MD TEMP/ALGODÓN</td>
<td>P = 0.370</td>
<td>P = 1.000</td>
<td>P = 1.000</td>
</tr>
</tbody>
</table>

Los resultados muestran que no hay diferencia estadísticamente significativa (P > 0.05) en todos los casos donde se utilizo 1mm de algodón en la entrada a los conductos con los que no se colocó nada.

A continuación se compara la eficacia de microfiltración entre los tres cementos de obturación provisional; Cavit G®, Provisit® y MD Temp® a 7, 11 y 15 días.
<table>
<thead>
<tr>
<th>GRUPOS</th>
<th>7 DIAS</th>
<th>11 DIAS</th>
<th>15 DIAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAVIT_PROVISIT</td>
<td>P = 1.000</td>
<td>P = 1.000</td>
<td>P = 1.000</td>
</tr>
<tr>
<td>CAVIT_MD TEMP</td>
<td>P = 0.650</td>
<td>P = 0.656</td>
<td>P = 0.179</td>
</tr>
<tr>
<td>MD TEMP_PROVISIT</td>
<td>P = 1.000</td>
<td>P = 0.370</td>
<td>P = 0.179</td>
</tr>
</tbody>
</table>

Los resultados de la prueba no muestran diferencias estadísticamente significativas (P > 0.05). Por lo tanto los tres cementos presentan microfiltración.

Los resultados arrojan que la utilización de una porción no mayor a 1 mm de algodón en la entrada a los conductos radiculares no es significativamente diferente a no utilizarlo para evitar la presencia de microfiltración; puesto que en ambos casos se encontró; la variación en cuanto al tiempo de permanencia del algodón con el cemento habla de que entre más transcurra éste la microfiltración es cada vez más evidente en la entrada a los conductos penetrando por completo la porción de algodón. Lo anterior ocurre con las tres marcas de cemento. En cuanto a la utilización de cemento únicamente, al igual que el caso anterior ninguno de los tres evitó la microfiltración, en todos los casos se encontraron rastros de tinción, los cuales tenían diferente ubicaciones; en el caso del Cavit G® las presentó en las paredes del conducto a manera espículas verticales y en cambio Provisit®, siempre se tiñó en zonas cercanas a la entrada a los conductos como forma de mancha, finalmente en el caso del MD-Temp® se observó en las zonas más cercanas al ángulo de la caja proximal. Por lo tanto se puede decir que éste cemento presenta menor
capacidad de sellado; todos los resultados mencionados fueron los encontrados a 7 días, mientras que en las muestras extraídas a los 11 y 15 días la mayor diferencia fue que la microfiltración se presentaba más en la zona de la entrada a los conductos. A los 15 días todas las entradas a los conductos estaban teñidas y solo en el caso de MD-Temp® algunas muestras ya presentaban microfiltración dentro de los conductos.
GRÁFICA 1. COMPARACIÓN DE LA MICROFILTRACIÓN DE LOS TRES DIFERENTES CEMENTOS PROVISIONALES A 7 DÍAS.

Gráfica 1. Muestra el porcentaje de microfiltración encontrado a 7 días entre cada uno de los cementos, 60% ausencia y 40% presencia.
GRÁFICA 2. COMPARACIÓN DE LA MICROFILTRACIÓN DE LOS TRES DIFERENTES CEMENTOS PROVISIONALES A 11 DÍAS.

Gráfica 2. Muestra el porcentaje de microfiltración encontrado a 11 días entre cada uno de los cementos, 43.3% ausencia y 56.7% presencia.
GRÁFICA 3. COMPARACIÓN DE LA MICROFILTRACIÓN DE LOS TRES DIFERENTES CEMENTOS PROVISIONALES A 15 DÍAS.

Gráfica 3. Muestra el porcentaje de microfiltración encontrado a 15 días entre cada uno de los cementos. 56.7% ausencia y 43.3% presencia.
GRÁFICA 4. COMPARACIÓN DE LA MICROFILTRACIÓN DE LOS TRES DIFERENTES CEMENTOS PROVISIONALES CON Y SIN ALGODÓN EN LA ENTRADA A LOS CONDUCTOS A 7 DÍAS.

Gráfica 4. Comparación de la microfiltración de los tres diferentes cementos provisionales a 7 días con 1mm de algodón en la entrada a los conductos. 53.3% ausencia, 46.7% presencia.
Gráfica 5. Comparación de la microfiltración de los tres diferentes cementos provisionales con y sin algodón en la entrada a los conductos a 11 días.

Gráfica 5. Comparación de la microfiltración de los tres diferentes cementos provisionales a 11 días con 1mm de algodón en la entrada a los conductos. 48.3% ausencia, 51.7% presencia.
GRÁFICA 6. COMPARACIÓN DE LA MICROFILTRACIÓN DE LOS TRES DIFERENTES CEMENTOS PROVISIONALES CON Y SIN ALGODÓN EN LA ENTRADA A LOS CONDUCTOS A 15 DÍAS.

Gráfica 6. Comparación de la microfiltración de los tres diferentes cementos provisionales a 15 días con 1mm de algodón en la entrada a los conductos. 41.7% ausencia, 58.3% presencia.
DISCUSIÓN

Safavi y cols han reportado que la microfiltración que presentan los materiales restauradores temporales incrementa con el tiempo\(^9\).

La microfiltración a los 15 días fue en aumento comparada con los resultados a los 7 días; más evidente en presencia de algodón en la entrada a los conductos.

Gilles y cols llegaron a la conclusión, que los fenómenos de absorción y deshidratación afectan la estabilidad dimensional de los materiales\(^{15}\).

Se concluyó que debido a las propiedades higroscópicas de los cementos, la estabilidad dimensional se ve alterada comprometiendo el sellado entre la pared dentinaria y el cemento, generando microfiltración que posteriormente avanza a las entradas de los conductos según incrementa el tiempo.

Lee y cols notaron que el mejor sellado provenía del Cavit G®, atribuyéndolo a sus propiedades higroscópicas, las cuales presentan un buen ajuste a las paredes por su expansión\(^{16}\).

Los resultados muestran que el Cavit G® presentó zonas microfiltradas mas pequeñas que Provisit® y MD-Temp® y mas alejadas de la entrada a los conductos, pero nunca tuvo el menor porcentaje de presencia de filtración.
CONCLUSIÓN

Ninguno de los 3 materiales fueron capaces de prevenir microfiltración en todas las muestras. La menor presencia de microfiltración fue de un 40% a los 7 días y la mayor de 56.7% a los 11 días.

El MD-Temp® mostró menor microfiltración a los a los 7 días, el Provisit® a los 11 días, y el Cavit G® y Provisit® los mismos resultados a los 15 días.

La presencia de algodón en la entrada a los conductos trae como consecuencia una evidente microfiltración de dicha zona por lo tanto el riesgo de que ésta se penetre a lo largo de los conductos es inminente.

Estadísticamente los resultados no mostraron diferencia significativa, probablemente por que la distribución de la muestra no es la misma, las muestras no se sometieron a ciclado térmico y por que es imposible durante los estudios de laboratorio reproducir artificialmente la condiciones intraorales de las fuerzas oclusales.

Se recomienda evitar la colocación de algodón en la entrada a los conductos para reducir el riesgo de microfiltración de las bacterias hacia los mismos.
ANEXOS

Fisher Exact Test

Data source: Data 1 in cavit vs provisit 7 días.JNB

(P = 1.000)

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Presencia microfiltración</th>
<th>Ausencia microfiltración</th>
<th>Counts</th>
<th>Expected Counts</th>
<th>Row %</th>
<th>Column %</th>
<th>Total %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>5.000</td>
<td>5.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.500</td>
<td>5.500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>50.000</td>
<td>50.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>55.556</td>
<td>45.455</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25.000</td>
<td>25.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Row 2

<table>
<thead>
<tr>
<th>4.000</th>
<th>6.000</th>
<th>Counts</th>
<th>4.500</th>
<th>5.500</th>
<th>Expected Counts</th>
<th>Row %</th>
<th>Column %</th>
<th>Total %</th>
</tr>
</thead>
<tbody>
<tr>
<td>40.000</td>
<td>60.000</td>
<td></td>
<td>44.444</td>
<td>54.545</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.000</td>
<td>30.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The proportion of observations in the different categories which define the contingency table is not significantly different than is expected from random occurrence (P = 1.000).

Fisher Exact Test

Data source: Data 1 in Cavit vs MD Temp 11 días.JNB

(P = 0.656)

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Presencia microfiltración</th>
<th>Ausencia microfiltración</th>
<th>Counts</th>
<th>Expected Counts</th>
<th>Row %</th>
<th>Column %</th>
<th>Total %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>4.000</td>
<td>6.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.000</td>
<td>5.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>40.000</td>
<td>60.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>40.000</td>
<td>60.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20.000</td>
<td>30.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Row 2

<table>
<thead>
<tr>
<th>6.000</th>
<th>4.000</th>
<th>Counts</th>
<th>5.000</th>
<th>5.000</th>
<th>Expected Counts</th>
<th>Row %</th>
<th>Column %</th>
<th>Total %</th>
</tr>
</thead>
<tbody>
<tr>
<td>60.000</td>
<td>40.000</td>
<td></td>
<td>60.000</td>
<td>40.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30.000</td>
<td>20.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The proportion of observations in the different categories which define the contingency table is not significantly different than is expected from random occurrence (P = 0.656).
Fisher Exact Test

Data source: Data 1 in cavít vs cavít_algodon 15 días.JNB

(P = 0.179)

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Presencia microfiltración</th>
<th>Ausencia microfiltración</th>
<th>Counts</th>
<th>Expected Counts</th>
<th>Row %</th>
<th>Column %</th>
<th>Total %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>3.000</td>
<td>7.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.000</td>
<td>5.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30.000</td>
<td>70.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30.000</td>
<td>70.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.000</td>
<td>35.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Row 2 7.000 3.000 Counts 5.000 5.000 Expected Counts 70.000 30.000 Row % 70.000 30.000 Column % 35.000 15.000 Total %

The proportion of observations in the different categories which define the contingency table is not significantly different than is expected from random occurrence (P = 0.179).

Fisher Exact Test

Data source: Data 1 in Provisit vs MD Temp 15 días.JNB

(P = 0.179)

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Presencia microfiltración</th>
<th>Ausencia microfiltración</th>
<th>Counts</th>
<th>Expected Counts</th>
<th>Row %</th>
<th>Column %</th>
<th>Total %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>3.000</td>
<td>7.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.000</td>
<td>5.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30.000</td>
<td>70.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30.000</td>
<td>70.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.000</td>
<td>35.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Row 2 7.000 3.000 Counts 5.000 5.000 Expected Counts 70.000 30.000 Row % 70.000 30.000 Column % 35.000 15.000 Total %

The proportion of observations in the different categories which define the contingency table is not significantly different than is expected from random occurrence (P = 0.179).
AGRADECIMIENTOS

Le doy gracias a mis padres Jesús y Teresa por apoyarme en todo momento, por los valores que me han inculcado, y por haberme dado la oportunidad de tener una excelente educación en el transcurso de mi vida. Sobre todo por ser un excelente ejemplo de vida a seguir.

A mi hermano Eduardo por que supo mantener a la familia unida a pesar de la distancia.

A mi Tía Rosa por siempre estar ahí y apoyarme cuando más lo necesite, tomándome como un miembro más de su familia, también a mi primo Ramón por nunca dejarme sola en nada, siempre al pendiente y tendiéndome la mano ante toda situación; gracias a los dos por darme un techo donde vivir.

A Lorenia por ser mi “madre postiza”, quien siempre me dio los mejores consejos, por que siempre tuvo las palabras de aliento que necesite.

Les agradezco la confianza, apoyo y dedicación de tiempo y conocimiento a mis profesores de ésta mi nueva Universidad.

A mis amigos por confiar y creer en mí y haber hecho de mi etapa de especialización un trayecto de vivencias que nunca olvidaré. Gracias Dianita, Chío y Eduardo por siempre extender su mano hacia mí.
DEDICATORIA

“Con todo mi cariño y mi amor para las personas que hicieron todo en la vida para que yo pudiera lograr mis sueños, por motivarme y darme la mano cuando sentía que el camino se terminaba, a ustedes por siempre mi corazón y mi agradecimiento.”

Papi y Mami
REFERENCIAS BIBLIOGRÁFICAS

2. “Coronal Microleakage of Four Restorative Materials Used in Endodontically Treated Teeth as A Coronal Barrier – An In Vitro Study.” S. Deepali, N. Hegde, Endodontology Department of Conservative Dentistry & Endodontics, A.B. Shetty Memorial Institute of Dental Sciences.

17. “Human Saliva Coronal Microleakage in Obturated Root Canals: An In Vitro Study.” M. E. Magura, A. H. Kafrawy, C. E. Brown, C. W. Newton,
JOE, 1991; 17(7).

23. “In Vitro Bacterial Penetration of Coronally Unsealed Endodontically