A comparative analysis of Gabor filters and biologically inspired learning rules for image classification implementing Spiking Neural Networks
dc.contributor.author | García Campos, Carlos Alan | |
dc.contributor.codirector | Okuno, Hirotsugu | |
dc.contributor.director | Morales Carbajal, Ricardo | |
dc.coverage.placeofpublication | Mexicali, Baja California. | |
dc.date.accessioned | 2025-03-18T02:23:53Z | |
dc.date.available | 2025-03-18T02:23:53Z | |
dc.date.created | 2025 | |
dc.degree.deparment | Universidad Autónoma de Baja California, Instituto de Ingeniería, Mexicali. | |
dc.degree.grantor | Tesis de Maestría / master Thesis. | |
dc.degree.name | Maestría y Doctorado en Ciencias e Ingeniería. | |
dc.description.abstract | Plastic changes on the synapse drive by spike-timing have been of great interestas the main learning rule for spiking neural networks. Spike-timing-based rules arebuilt to model the behavior of a region on the brain related to experimental data inneuroscience, therefore can lead to differences in the moment of implementing therule within a spiking network. This work compares the performance of a pair-wiseand a triplet STDP with different spike interactions to clear an MNIST classificationtask. A bio-inspired preprocessing stage was implemented that consisted of a Gaborfilter (as a model of the simple cells mechanism orientation selectivity) and an inputnormalization for a homogeneous brightness level of each image. The highlightsof this work are 1) The consistent improvement of the model accuracy wheneverthey added the Gabor filter to the inputs; 2) The input normalization to preventthe overfitting of the model; 3) The Gabor filter helps to correct decoding of someimages of the dataset on the evaluation test. | |
dc.format.extent | 69 p. ; il. col. | |
dc.format.mimetype | ||
dc.identifier.uri | https://hdl.handle.net/20.500.12930/12114 | |
dc.language.iso | spa | |
dc.publisher | Universidad Autónoma de Baja California. | |
dc.relation.url | https://drive.google.com/file/d/1jUWURFzAfflbH7JzGXP1qUD80Qc8-kcS/view?usp=sharing | |
dc.rights | openAccess | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4 | |
dc.subject | Redes neuronales (Informática) ||Tesis y disertaciones académicas||Redes neurales (computadores) ||Tesis y disertaciones académicas||lemb||Redes neuronales (Informática) Software ||Tesis y disertaciones académicas. | |
dc.subject.lcc | QA76.87 G37 2025 | |
dc.title | A comparative analysis of Gabor filters and biologically inspired learning rules for image classification implementing Spiking Neural Networks | |
dc.uabc.bibliographycNote | Incluye referencias bibliográficas. | |
dc.uabc.bilbioteca | MEXICALI | |
dc.uabc.identifier | 272379 | |
dc.uabc.numInventario | MXL125429 | |
dc.uabc.typeMaterial | TESIS |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- MXL125429.pdf
- Tamaño:
- 2.73 MB
- Formato:
- Adobe Portable Document Format
- Descripción: